Теория электролитической диссоциации

Заказать работу

Концентрация растворов.

Способы выражения концентрации растворов.

Существуют различные способы выражения состава раствора. Наиболее часто используют массовую долю растворённого вещества, молярную и нормальную концентрацию.

Массовая доля растворённого вещества w(B) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m :

w(B)= m(B) / m

Массовую долю растворённого вещества w(B) обычно выражают в долях единицы или в процентах. Например, массовая доля растворённого вещества - CaCl2 в воде равна 0,06 или 6%. Это означает,что в растворе хлорида кальция массой 100 г содержится хлорид кальция массой 6 г и вода массой 94 г.

Пример.

Сколько грамм сульфата натрия и воды нужно для приготовления 300 г 5% раствора?

Решение.

m(Na2SO4) = w(Na2SO4) / 100 = (5 • 300) / 100 = 15 г

где w(Na2SO4) - массовая доля в %,

m - масса раствора в г

m(H2O) = 300 г - 15 г = 285 г.

Таким образом, для приготовления 300 г 5% раствора сульфата натрия надо взять 15 г Na2SO4 и 285 г воды.

Молярная концентрация C(B) показывает, сколько моль растворённого вещества содержится в 1 литре раствора.

C(B) = n(B) / V = m(B) / (M(B) • V),

где М(B) - молярная масса растворенного вещества г/моль.

Молярная концентрация измеряется в моль/л и обозначается "M". Например, 2 M NaOH - двухмолярный раствор гидроксида натрия. Один литр такого раствора содержит 2 моль вещества или 80 г (M(NaOH) = 40 г/моль).

Пример.

Какую массу хромата калия K2CrO4 нужно взять для приготовления 1,2 л 0,1 М раствора?

Решение.

M(K2CrO4) = C(K2CrO4) • V • M(K2CrO4) = 0,1 моль/л • 1,2 л • 194 г/моль » 23,3 г.

Таким образом, для приготовления 1,2 л 0,1 М раствора нужно взять 23,3 гK2CrO4 и растворить в воде, а объём довести до 1,2 литра.

Концентрацию раствора можно выразить количеством молей растворённого вещества в 1000 г растворителя. Такое выражение концентрации называют молярностью раствора.

Нормальность раствора обозначает число грамм-эквивалентов данного вещества в одном литре раствора или число миллиграмм-эквивалентов в одном миллилитре раствора.

Грамм - эквивалентом вещества называется количество граммов вещества, численно равное его эквиваленту. Для сложных веществ - это количество вещества, соответствующее прямо или косвенно при химических превращениях 1 грамму водорода или 8 граммам кислорода.

Эоснования = Моснования / число замещаемых в реакции гидроксильных групп

Экислоты = Мкислоты / число замещаемых в реакции атомов водорода

Эсоли = Мсоли / произведение числа катионов на его заряд

Пример.

Вычислите значение грамм-эквивалента (г-экв.) серной кислоты, гидроксида кальция и сульфата алюминия.

Э H2SO4 = М H2SO4 / 2 = 98 / 2 = 49 г

Э Ca(OH)2 = М Ca(OH)2 / 2 = 74 / 2 = 37 г

Э Al2(SO4)3 = М Al2(SO4)3 / (2 • 3) = 342 / 2= 57 г

Величины нормальности обозначают буквой "Н". Например, децинормальный раствор серной кислоты обозначают "0,1 Н раствор H2SO4". Так как нормальность может быть определена только для данной реакции, то в разных реакциях величина нормальности одного и того же раствора может оказаться неодинаковой. Так, одномолярный раствор H2SO4 будет однонормальным, когда он предназначается для реакции со щёлочью с образованием гидросульфата NaHSO4, и двухнормальным в реакции с образованием Na2SO4.

Пример.

Рассчитайте молярность и нормальность 70%-ного раствора H2SO4 (r = 1,615 г/мл).

Решение.

Для вычисления молярности и нормальности надо знать число граммов H2SO4 в 1 л раствора. 70% -ный раствор H2SO4 содержит 70 г H2SO4 в 100 г раствора. Это весовое количество раствора занимает объём

V = 100 / 1,615 = 61,92 мл

Следовательно, в 1 л раствора содержится 70 • 1000 / 61,92 = 1130,49 г H2SO4

Отсюда молярность данного раствора равна: 1130,49 / М (H2SO4) =1130,49 / 98 =11,53 M

Нормальность этого раствора (считая, что кислота используется в реакции в качестве двухосновной) равна 1130,49 / 49 =23,06 H

Пересчет концентраций растворов из одних единиц в другие.

При пересчете процентной концентрации в молярную и наоборот, необходимо помнить, что процентная концентрация рассчитывается на определенную массу раствора, а молярная и нормальная - на объем, поэтому для пересчета необходимо знать плотность раствора. Если мы обозначим: с - процентная концентрация; M - молярная концентрация; N - нормальная концентрация; э - эквивалентная масса, r - плотность раствора; m - мольная масса, то формулы для пересчета из процентной концентрации будут следующими:

M = (c • p • 10) / m

N = (c • p • 10) / э

Этими же формулами можно воспользоваться, если нужно пересчитать нормальную или молярную концентрацию на процентную.

Пример.

Какова молярная и нормальная концентрация 12%-ного раствора серной кислоты, плотность которого р = 1,08 г/см3?

Решение.

Мольная масса серной кислоты равна 98. Следовательно,

m(H2SO4) = 98 и э(H2SO4) = 98 : 2 = 49.

Подставляя необходимые значения в формулы, получим:

а) Молярная концентрация 12% раствора серной кислоты равна

M = (12 • 1,08 • 10) / 98 = 1,32 M

б) Нормальная концентрация 12% раствора серной кислоты равна

N = (12 • 1,08 • 10) / 49 = 2,64 H.

Иногда в лабораторной практике приходится пересчитывать молярную концентрацию в нормальную и наоборот. Если эквивалентная масса вещества равна мольной массе (Например, для HCl, KCl, KOH), то нормальная концентрация равна молярной концентрации. Так, 1 н. раствор соляной кислоты будет одновременно 1 M раствором. Однако для большинства соединений эквивалентная масса не равна мольной и, следовательно, нормальная концентрация растворов этих веществ не равна молярной концентрации.

Для пересчета из одной концентрации в другую можно использовать формулы:

M = (N • Э) / m

N = (M • m) / Э

Пример.

Нормальная концентрация 1 М раствора серной кислоты

N = (1 • 98) / 49 = 2 H.

Пример.

Молярная концентрация 0,5 н. Na2CO3

M = (0,5 • 53) / 106 = 0,25 M.

Упаривание, разбавление, концентрирование, смешивание растворов.

Имеется mг исходного раствора с массовой долей растворенного вещества w1 и плотностью r1.

Упаривание раствора.

В результате упаривания исходного раствора его масса уменьшилась на Dm г. Определить массовую долю раствора после упаривания w2

Решение.

Исходя из определения массовой доли, получим выражения для w1 и w2 (w2 > w1):

w1 = m1 / m

(где m1 - масса растворенного вещества в исходном растворе)

m1 = w1 • m

w2 = m1 / (m - Dm) = (w1 • m) / (m - Dm)

Пример.

Упарили 60 г 5%-ного раствора сульфата меди до 50 г. Определите массовую долю соли в полученном растворе.

m = 60 г; Dm = 60 - 50 = 10 г; w1 = 5% (или 0,05)

w2 = (0,05 • 60) / (60 - 10) = 3 / 50 = 0,06 (или 6%-ный)

Концентрирование раствора.

Какую массу вещества (X г) надо дополнительно растворить в исходном растворе, чтобы приготовить раствор с массовой долей растворенного вещества w2?

Решение.

Исходя из определения массовой доли, составим выражение для w1 и w2:

w1 = m1 / m2,

(где m1 - масса вещества в исходном растворе).

m1 = w1 • m

w2 = (m1+x) / (m + x) = (w1 • m + x) / (m+x)

Решая полученное уравнение относительно х получаем:

w2 • m + w2 • x = w1 • m + x

w2 • m - w1 • m = x - w1 • x

(w2 - w1) • m = (1 - w2) • x

x = ((w2 - w1) • m) / (1 - w2)

Пример.

Сколько граммов хлористого калия надо растворить в 90 г 8%-ного раствора этой соли, чтобы полученный раствор стал 10%-ным?

m = 90 г

w1 = 8% (или 0,08), w2 = 10% (или 0,1)

x = ((0,1 - 0,08) • 90) / (1 - 0,1) = (0,02 • 90) / 0,9 = 2 г

Смешивание растворов с разными концентрациями.

Смешали m1 граммов раствора №1 c массовой долей вещества w1 и m2 граммов раствора №2 c массовой долей вещества w2. Образовался раствор (№3) с массовой долей растворенного вещества w3. Как относятся друг к другу массы исходных растворов?

Решение.

Пусть w1 > w2, тогда w1 > w3 > w2. Масса растворенного вещества в растворе №1 составляет w1 • m1, в растворе №2 - w2 • m2. Масса образовавшегося раствора (№3) - (m1 - m2). Сумма масс растворенного вещества в растворах №1 и №2 равна массе этого вещества в образовавшемся растворе (№3):

w1 • m1 + w2 • m2 = w3 • (m1 + m2)

w1 • m1 + w2 • m2 = w3 • m1 + w3 • m2

w1 • m1 - w3 • m1 = w3 • m2 - w2 • m2

(w1- w3) • m1 = (w3- w2) • m2

m1 / m2 = (w3 - w2 ) / (w1- w3)

Таким образом, массы смешиваемых растворов m1 и m2 обратно пропорциональны разностям массовых долей w1 и w2 смешиваемых растворов и массовой доли смеси w3. (Правило смешивания).

Для облегчения использования правила смешивания применяют правило креста :

m1 / m2 = (w3 - w2) / (w1 - w3)

Для этого по диагонали из большего значения концентрации вычитают меньшую, получают (w1 - w3), w1 > w3 и (w3 - w2), w3 > w2. Затем составляют отношение масс исходных растворов m1 / m2 и вычисляют.

Пример.

Определите массы исходных растворов с массовыми долями гидроксида натрия 5% и 40%, если при их смешивании образовался раствор массой 210 г с массовой долей гидроксида натрия 10%.

5 / 30 = m1 / (210 - m1)

1/6 = m1 / (210 - m1)

210 - m1 = 6m1

7m1 = 210

m1 =30 г; m2 = 210 - m1 = 210 - 30 = 180 г

Разбавление раствора.

Исходя из определения массовой доли, получим выражения для значений массовых долей растворенного вещества в исходном растворе №1 (w1) и полученном растворе №2 (w2):

w1 = m1 / (r1 • V1) откуда V1= m1 /( w1 • r1)

w2 = m2 / (r2 • V2)

m2 = w2 • r2 • V2

Раствор №2 получают, разбавляя раствор №1, поэтому m1 = m2. В формулу для V1 следует подставить выражение для m2. Тогда

V1= (w2 • r2 • V2) / (w1 • r1)

m2 = w2 • r2 • V2

или

w1 • r1 • V1 = w2 • r2 • V2
m1(раствор) m2(раствор)

m1(раствор) / m2(раствор) = w2 / w1

При одном и том же количестве растворенного вещества массы растворов и их массовые доли обратно пропорциональны друг другу.

Пример.

Определите массу 3%-ного раствора пероксида водорода, который можно получить разбавлением водой 50 г его 3%-ного раствора.

m1(раствор) / m2(раствор) = w2 / w1

50 / x = 3 / 30

3x = 50 • 30 = 1500

x = 500 г

Последнюю задачу можно также решить, используя "правило креста":

3 / 27 = 50 / x

x = 450 г воды

450 г + 50 г = 500 г

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://schoolchemistry.by.ru/

Другие материалы

  • Теория структурообразования и оптимизация структуры ИСК
  • ... количества жидкостной среды в смеси, что должно быть каждый раз обосновано с общих позиций оптимизации структуры и требований к конкретным видам оптимальных структур. При использовании смесей с повышенной вязкостью, обладающих на реологической кривой условным динамическим пределом текучести и ...

  • Физика, основы теории
  • ... алюминия, олова, ртути, свинца), а также ряда сплавов скачком падает до нуля. Это явление получило название сверхпроводимости. Это явление не может быть объяснено на основе классической электронной теории проводимости. Объяснение этому явлению дает только квантовая механика. Классическая электронная ...

  • Общая и неорганическая химия
  • ... при эксплуатации котельных установок.ъВ общем случае под гидролизом понимают реакцию разложения вещества водой (от греч. «гидро» - вода, «лизис» - разложение). Гидролизу могут подвергаться белки, жиры, углеводы, эфиры и другие вещества. В неорганической химии чаще всего встречаются с гидролизом ...

  • Электролиты и их свойства
  • ... однако, присутствием и влиянием ионов; переходную область и область концентрированных растворов. Весьма разбавленные растворы слабых электролитов по своим свойствам близки к идеальным растворам и достаточно хорошо описываются классической теорией электролитической диссоциации. Разбавленные растворы ...

  • Химические реакции и системы
  • ... состоит из нескольких фаз, разграниченных между собой поверхностями раздела. Это любые системы, в которых участвуют реагенты в твердом состоянии, несмешивающиеся жидкости и т.д. Скорость химической реакции, как правило, выражается в моль/(л·с) для гомогенных систем и в моль/(м2·с) для гетерогенных ...

  • Водные растворы электролитов
  • ... ® (MgOH)2SO4 + 2H2O; (MgOH)2SO4 <=> 2MgOH+ + SO42-; Как правило, все соли относятся к сильным электролитам. Сильные электролиты в водных растворах полностью диссоциированы на ионы. В воде, являющейся растворителем, статистически равномерно распределяются полностью гидратированные катионы и анионы ...

  • Билеты по химии 10 класс
  • ... зарядов. Прочность водородной связи существенно (~20 раз) меньше, чем ионной или ковалентной связи. Билет №4. Классификация химических реакций в неорганической химии. Классификация по составу исходных веществ и продуктов реакции. Реакции соединения — из нескольких веществ (простых или ...

  • Программа для поступающих в вузы (ответы)
  • ... H2 → CH2=CH2 + H2 → CH3–CH3 4.    CH≡CH + HOH → [CH2=CHOH] → CH3CHO Реакция протекает легче, чем для алкенов. Катализатором служит разбавленная серная кислота и соли двухвалентной ртути. Эта реакция была открыта М. Г. Кучеровым в 1881 г. и носит его имя ...

  • Методика изучения кристаллогидратов в школьном курсе химии
  • ... плане. Это дает нам возможность проанализировать содержание данной темы в курсе химии средней школы. Глава 2. МЕТОДИКА ИЗУЧЕНИЯ КРИСТАЛЛОГИДРАТОВ В КУРСЕ ХИМИИ СРЕДНЕЙ ШКОЛЫ   2.1 Тема «Кристаллогидраты» в стандарте школьного образования Стандарт среднего (полного) общего образования ...

  • Выдающиеся русские химики. Владимир Александрович Кистяковский
  • ... сама жизнь… Сама жизнь шла навстречу молодому энтузиасту Оствальду. Всё окружающее было проникнуто научными интересами». В лаборатории Владимир Александрович часто встречался с Оствальдом, подружился с Аррениусом. В беседах с ними постоянно обсуждались различные научные проблемы, особенно теория ...

  • Коллоидная химия
  • ... большим значением удельной поверхности дисперсной фазы. Это обусловливает значительный вклад поверхностной фазы в состояние системы и приводит к появлению у коллоидных систем особых, присущих только им, свойств. Иногда выделяют молекулярно(ионно)-дисперсные системы, которые, строго говоря, являются ...

  • Научные основы школьного курса химии. методика изучения растворов
  • ... хлорида натрия. Что вы наблюдаете? Проведите анализ опытов а) и б).   Глава 2. Методика изучения растворов. Теория растворов – одна из ведущих теорий курса химии. Причины важности темы кроется не только в том, что она имеет большое ...

  • Основания
  • ... nbsp; слабая кислота является тем более сильным протолитом, чем ниже значе­ние рКк соответствующей сопряженной пары; ·     слабое основание является тем более сильным протолитом, чем выше значение рКк  соответствующей сопряженной пары. А13+ • Н2О + Н2О = А1ОН2+ + Н3О- Слабыми ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info