Системы линейных уравнений

Заказать работу

1. Критерий совместности

Система линейных уравнений имеет вид:

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2 (5.1)

... ... ... ... ... ... ... ... ... ... ...

am1x2 + am2x2 +... + amnxn = bm

Здесь аij и bi (i = ; j = ) - заданные, а xj - неизвестные действительные числа. Используя понятие произведения матриц, можно переписать систему (5.1) в виде:

AX = B, (5.2)

где A = (аij) - матрица, состоящая из коэффициентов при неизвестных системы (5.1), которая называется матрицей системы, X = (x1, x2,..., xn)T,

B = (b1, b2,..., bm)T - векторы-столбцы, составленные соответственно из неизвестных xj и из свободных членов bi.

Упорядоченная совокупность n вещественных чисел (c1, c2,..., cn) называется решением системы (5.1), если в результате подстановки этих чисел вместо соответствующих переменных x1, x2,..., xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1, c2,..., cn)T такой, что AC ≡ B.

Система (5.1) называется совместной, или разрешимой, если она имеет по крайней мере одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.

Матрица

à = ,

образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.

Вопрос о совместности системы (5.1) решается следующей теоремой.

Теорема Кронекера- Капелли. Система линейных уравнений совместна тогда и только тогда, когда ранги матриц A и Ã совпадают, т.е.

r(A) = r(Ã) = r.

Для множества М решений системы (5.1) имеются три возможности:

1) M = Ø (в этом случае система несовместна);

2) M состоит из одного элемента, т.е. система имеет единственное решение (в этом случае система называется определенной);

3) M состоит более чем из одного элемента (тогда система называется неопределенной). В третьем случае система (5.1) имеет бесчисленное множество решений.

Система имеет единственное решение только в том случае, когда

r(A) = n. При этом число уравнений - не меньше числа неизвестных (m ≥ n); если m > n, то m-n уравнений являются следствиями остальных. Если 0 < r < n, то система является неопределенной.

Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, - так называемые системы крамеровского типа:

a11x1 + a12x2 + ... + a1nxn = b1

a21x1 + a22x2 + ... + a2nxn = b2 (5.3)

... ... ... ... ... ... ... ... ... ...

an1x2 + an2x2 + ... + annxn = bn

Системы (5.3) решаются одним из следующих способов: 1) методом Гаусса, или методом исключения неизвестных; 2) по формулам Крамера;3) матричным методом.

2. Метод Гаусса

Исторически первым, наиболее распространенным методом решения систем линейных уравнений является метод Гаусса, или метод последовательного исключения неизвестных. Сущность этого метода состоит в том, что посредством последовательных исключений неизвестных данная система превращается в ступенчатую (в частности, треугольную) систему, равносильную данной. При практическом решении системы линейных уравнений методом Гаусса удобнее приводить к ступенчатому виду не саму систему уравнений, а расширенную матрицу этой системы, выполняя элементарные преобразования над ее строками. Последовательно получающиеся в ходе преобразования матрицы обычно соединяют знаком эквивалентности.

3. Формулы Крамера

Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т.е. определитель матрицы А

Δ = det (aij)

и n вспомогательных определителей Δi (i = ), которые получаются из определителя Δ заменой i-го столбца столбцом свободных членов.

Формулы Крамера имеют вид:

Δ · xi = Δi (i = ). (5.4)

Из (5.4) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (5.3): если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:

xi = Δi / Δ.

Если главный определитель системы Δ и все вспомогательные определители Δi = 0 (i = ), то система имеет бесчисленное множество решений. Если главный определитель системы Δ = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.

4. Матричный метод

Если матрица А системы линейных уравнений невырожденная, т.е.

det A ≠ 0, то матрица А имеет обратную, и решение системы (5.3) совпадает с вектором C = A-1B. Иначе говоря, данная система имеет единственное решение. Отыскание решения системы по формуле X = C, C = A-1B называют матричным способом решения системы, или решением по методу обратной матрицы.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.mathematica.ru

Другие материалы

  • Уравнение Кортевега - де Фриса, солитон, уединенная волна
  • ... , Крус­кал и Забуски рассмотрели их столкновение. Оста­новимся подробнее на обсуждении этого замеча­тельного факта. Пусть имеются две уединенные волны, описываемые уравнением Кортевега—де Фриса, которые различаются амплитудами и дви­жутся друг за другом в одном направлении (рис. 2). Из формулы для ...

  • Уравнения и способы их решения
  • ... надо рассмотреть лишь два варианта: ,  и . Подставляя эти пары значений в остальные уравнения, убеждаемся, что первая из них дает искомое разложение: . Этот способ решения называется методом неопределенных коэффициентов. Если уравнение имеет вид , где  и  - многочлены, то замена  сводит его ...

  • Гипергеометрическое уравнение
  • ... функции и его интегралы, представление различных функций через вырожденные гипергеометрические функции. 1. Гипергеометрическое уравнение 1.1 Определение гипергеометрического ряда Гипергеометрическим рядом называется степенной ряд вида , где z – комплексная переменная, , ,  - ...

  • Уравнения, содержащие параметр
  • ... , что все значения  удовлетворяют условию. Ответ: 2. Примеры решений уравнений с параметром из ГИА и ЕГЭ части С Узнав всю теоретическую основу и методы решений различных уравнений, содержащих параметр, я решила применить свои знания на практике. Мы выбрали несколько вариантов заданий ...

  • Линейный множественный регрессивный анализ
  • ... b2= 0,200539077387593 b4= -0,0847616134509301 b5= 0,374792925415136 Получаем уравнение линейной множественной регрессии: Расчетные значения критерия для заданных параметров получили с помощью инструмента «Регрессия» надстройки «Анализ данных» приложения MS Excel (результаты вычисления ...

  • Решение линейных интегральных уравнений
  • ... блок-схемы. y[i]=B[i,m];   Используя данную блок-схему, напишем соответствующую функцию. Функция решения линейных интегральных уравнений будет реализована на С++. bool solvefredholm2(const double& a, const double& ...

  • Решение систем линейных дифференциальных уравнений пятиточечным методом Адамса – Башфорта
  • ... 3 . ЗАКЛЮЧЕНИЕ В данной курсовой научно-исследовательской работе разработан алгоритм и программа решения систем линейных дифференциальных уравнений первого порядка пяти точечным методом прогноза и коррекции Адамса-Башфорта . Проведены тестовые расчеты , подтвердившие высокую эффективность и точность ...

  • Экзаменационные билеты по предмету: Уравнения математической физики за весенний семестр 2001 года
  • ... cos4x и ?(x)=cos6x на отрезке [pic]. Решить задачу Штурма-Лиувилля y''+?y=0, y'(0)=у'(2)=0. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ Билет № 1110) Какой вид имеют ряды Фурье четных и нечетных функций. Приведите ...

  • Дифференциальные уравнения I и II порядка
  • ... , , , ……………………………… , решая которые относительно c1, c2 , …, cn находят значения этих постоянных. Например, для дифференциального уравнения 1-го порядка общее решение имеет вид y=f(x,c). Тогда начальное условие y(x0)=y0 выделяет из всего семейства интегральных кривых кривую, проходящую через точку ...

  • Уравнения математической физики
  • ... в µ §. Теорема 3 доказана. Задача Дирихле - однозначная разрешимость. Теорема 4 о гладкости решения задачи Неймана. Пусть µ § - правая часть уравнения. Пусть µ § - обобщенное решение задачи (1) (2), тогда: µ § Доказательство - аналогично теореме 3. Теорема 5. Пусть граница µ § ; пусть правая часть ...

  • Линейные уравнения и неравенства
  • ... позже, то он был бы в пути 1 ч (7 ч 35 мин. – 6 ч 35 мин.= 1ч). Получаем уравнение: 2,5V1 +V2 =180. Таким образом, имеем систему двух уравнений с двумя неизвестными: , откуда V1=40 км/ч, V2=80 км/ч. Ответ: 40 км/ч, 80 км/ч. 4. Линейные неравенства с одной переменной. Если переменной х придать какое ...

  • Операторные уравнения
  • ... теорем существования и единственности решений. Глава 2. Приложение Пример 1. Рассмотрим интегральное уравнение с малым вещественным параметром λ:  (1) Это уравнение вида А()х = у() – операторное уравнение в С[-π; π], где Покажем, что А() аналитична в т. 0, т.е. разлагается в ряд ...

  • Изучение теоремы Безу для решения уравнений n-й степени при n>2
  • ... его именем назван способ решения систем уравнений, основанный на этом методе. Часть трудов Безу посвящена внешней баллистике. Именем учёного названа одна из основных теорем алгебры, о которой будет говориться ниже. Теорема Безу При делении многочлена n-й степени относительно x на двучлен ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info