Рекурсия

Заказать работу

Рекурсия — это такой способ организации вспомогательного алгоритма (подпрограммы), при котором эта подпрограмма (процедура или функция) в ходе выполнения ее операторов обращается сама к себе. Вообще, рекурсивным называется любой объект, который частично определяется через себя.

Например, приведенное ниже определение двоичного кода является рекурсивным:

<двоичный код> ::= <двоичная цифра> | <двоичный код><двоичная цифра>

<двоичная цифра> ::= 0 | 1

Здесь для описания понятия были использованы, так называемые, металингвистический формулы Бэкуса-Наура (язык БНФ); знак "::=" обозначает "по определению есть", знак "|" — "или".

Вообще, в рекурсивном определении должно присуствовать ограничение, граничное условие, при выходе на которое дальнейшая инициация рекурсивных обращений прекращается.

Приведём другие примеры рекурсивных определений.

Пример 1. Классический пример, без которого не обходятся ни в одном рассказе о рекурсии, — определение факториала. С одной стороны, факториал определяется так: n!=1*2*3*...*n. С другой стороны, Граничным условием в данном случае является n<=1.

Пример 2. Определим функцию K(n), которая возвращает количество цифр в заданном натуральном числе n:

Задание. По аналогии определите функцию S(n), вычисляющую сумму цифр заданного натурального числа.

Пример 3. Функция C(m, n), где 0<=m<=n, для вычисления биномиального коэффициента по следующей формуле является рекурсивной.

Ниже будут приведены программные реализации всех этих (и не только) примеров.

Обращение к рекурсивной подпрограмме ничем не отличается от вызова любой другой подпрограммы. При этом при каждом новом рекурсивном обращении в памяти создаётся новая копия подпрограммы со всеми локальными переменными. Такие копии будут порождаться до выхода на граничное условие. Очевидно, в случае отсутствия граничного условия, неограниченный рост числа таких копий приведёт к аварийному завершению программы за счёт переполнения стека.

Порождение все новых копий рекурсивной подпрограммы до выхода на граничное условие называется рекурсивным спуском. Максимальное количество копий рекурсивной подпрограммы, которое одновренно может находиться в памяти компьютера, называется глубиной рекурсии. Завершение работы рекурсивных подпрограмм, вплоть до самой первой, инициировавшей рекурсивные вызовы, называется рекурсивным подъёмом.

Выполнение действий в рекурсивной подпрограмме может быть организовано одним из вариантов:

Begin Begin Begin

P; операторы; операторы;

операторы; P P;

End; End; операторы

End;

рекурсивный подъём рекурсивный спуск и рекурсивный спуск, и рекурсивный подъём

Здесь P — рекурсивная подпрограмма. Как видно из рисунка, действия могут выполняться либо на одном из этапов рекурсивного обращения, либо на обоих сразу. Способ организации действий диктуется логикой разрабатываемого алгоритма.

Реализуем приведённые выше рекурсивные определения в виде функций и процедур на языке Pascal и в виде функций на языке C.

Пример 1.

{Функция на Pascal}

Function Factorial(N:integer):Extended;

Begin

If N<=1

Then Factorial:=1

Else Factorial:=Factorial(N-1)*N

End;

{Процедура на Pascal}

Procedure Factorial(N:integer; Var F:Extended);

Begin

If N<=1

Then F:=1

Else Begin Factorial(N-1, F); F:=F*N End

End;

/* Функция на C */

double Factorial(int N)

{

double F;

if (N<=1) F=1.; else F=Factorial(N-1)*N;

return F;

}

Пример 2.

{Функция на Pascal}

Function K(N:Longint):Byte;

Begin

If N<10

Then K:=1

Else K:=K(N div 10)+1

End;

{Процедура на Pascal}

Procedure K(N:Longint; Var Kol:Byte)

Begin

If N<10

Then Kol:=1

Else Begin K(N Div 10, Kol); Kol:=Kol+1 End;

End;

/* Функция на C */

int K(int N)

{ int Kol;

if (N<10) Kol=1; else Kol=K(N/10)+1;

return Kol;

}

Пример 3.

{Функция на Pascal}

function C(m, n :Byte):Longint;

Begin

If (m=0) or (m=n)

Then C:=1

Else C:=C(m, n-1)+C(m-1, n-1)

End;

{Процедура на Pascal}

Procedure C(m, n: Byte; Var R: Longint);

Var R1, R2 : Longint;

Begin

If (m=0) or (m=n)

Then R:=1

Else Begin

C(m, n-1, R1);

C(m-1, n-1, R2);

R:=R1+R2

End;

End;

/* Функция на C */

int C(int m, int n)

{ int f;

 if (m==0||m==n) f=1; else f=C(m, n-1)+C(m-1, n-1);

 return f;

}

Пример 4. Вычислить сумму элементов линейного массива.

При решении задачи используем следующее соображение: сумма равна нулю, если количество элементов равно нулю, и сумме всех предыдущих элементов плюс последний, если количество элементов не равно нулю.

{Программа на языке Pascal}

Program Rec2;

Type LinMas = Array[1..100] Of Integer;

Var A : LinMas;

I, N : Byte;

{Рекурсивная функция}

Function Summa(N : Byte; A: LinMas) : Integer;

Begin

If N = 0 Then Summa := 0 Else Summa := A[N] + Summa(N - 1, A)

End;

{Основная программа}

Begin

Write('Количество элементов массива? '); ReadLn(N); Randomize;

For I := 1 To N Do

Begin

A[I] := -10 + Random(21); Write(A[I] : 4)

End;

WriteLn; WriteLn('Сумма: ', Summa(N, A))

End.

/* Программа на языке C */

 #include <stdio.h>

 #include <conio.h>

 #include <stdlib.h>

 #include <time.h>

 int summa(int N, int a[100]);

 int i,n, a[100];

 void main()

 {

clrscr();

printf("nКоличество элементов массива? "); scanf("%d", &n);

printf("nВ сформированном массиве %d чисел:n", n);

randomize();

for (i=0; i<n; i++)

{a[i]= -10+random(21); printf("%d ", a[i]);}

printf("Сумма: %d", summa(n-1, a));

 }

 int summa(int N, int a[100])

 {

if (N==0) return a[0]; else return a[N]+summa(N-1, a);

 }

Пример 5. Определить, является ли заданная строка палиндромом, т.е. читается одинаково слева направо и справа налево.

Идея решения заключается в просмотре строки одновременно слева направо и справа налево и сравнении соответствующих символов. Если в какой-то момент символы не совпадают, делается вывод о том, что строка не является палиндромом, если же удается достичь середины строки и при этом все соответствующие символы совпали, то строка является палиндромом. Граничное условие — строка является палиндромом, если она пустая или состоит из одного символа.

{программа на языке Pascal}

Program Palindrom;

{Рекурсивная функция}

Function Pal(S: String) : Boolean;

Begin

If Length(S)<=1

Then Pal:=True

Else Pal:= (S[1]=S[Length(S)]) and Pal(Copy(S, 2, Length(S) - 2));

End;

Var S : String;

{Основная программа}

Begin

Write('Введите строку: '); ReadLn(S);

If Pal(S) Then WriteLn('Строка является палиндромом')

Else WriteLn('Строка не является палиндромом')

End.

/* программа на языке C */

 #include <stdio.h>

 #include <conio.h>

 #include <string.h>

char s[100];

int pal(char s[100]);

void main()

{ clrscr();

printf("nВведите строку: "); gets(s);

if (pal(s)) printf("Строка является палиндромом");

else printf("Строка не является палиндромом");

}

int pal(char s[100])

{ int l; char s1[100];

if (strlen(s)<=1) return 1;

else {l=s[0]==s[strlen(s)-1];

strncpy(s1, s+1, strlen(s)-2);

s1[strlen(s)-2]='';

return l&&pal(s1);}

}

Задание. Используя аналогичный подход, определите, является ли заданное натуральное число палиндромом.

Подводя итог, заметим, что использование рекурсии является красивым приёмом программирования. В то же время в большинстве практических задач этот приём неэффективен с точки зрения расходования таких ресурсов ЭВМ, как память и время исполнения программы. Использование рекурсии увеличивает время исполнения программы и зачастую требует значительного объёма памяти для хранения копий подпрограммы на рекурсивном спуске. Поэтому на практике разумно заменять рекурсивные алгоритмы на итеративные.

Контрольные вопросы и задания

Какое определение называется рекурсивным? Приведите собственные примеры рекурсивных определений.

Какой вспомогательный алгоритм (подпрограмма) называются рекурсивными? Приведите собственные примеры содержательных задач, где для решения может быть использован рекурсивный вспомогательный алгоритм.

Что такое граничное условие и каково его назначение в рекурсивной подпрограмме?

Что такое рекурсивный спуск?

Что такое рекурсивный подъём?

Что такое глубина рекурсии? Чему равна глубина рекурсии в приведённых выше примерах?

На каком этапе выполнения рекурсивной подпрограммы могут выполняться её операторы?

Почему приведённый ниже алгоритм посимвольного формирования строки завершится аварийно?

Function Stroka : String;

Var C : Char;

Begin

Write('Введите очередной символ: '); ReadLn(C);

Stroka:=Stroka+C

End;

На каком этапе выполняются действия в этом алгорит

Другие материалы

  • Финансовые функции и рекурсия
  • ... Mathcad. Все они делятся на три категории: прямые рекурсивные аналоги, частные случаи и обобщения встроенных в Excel финансовых функций. Для первой категории функций и их аргументов используются стандартные обозначения. В иных ситуациях обозначения произвольны. Наличие почти во всех задачах несложно ...

  • Применение рекурсии в алгоритмах с возвратом. Файловый тип. Ввод/вывод
  • ... case TryMove (x, y) of true: WriteLn ('Нашел путь :-)'); false: WriteLn ('Нет путей :-('); end; end; End. Файловый тип. Ввод/вывод.  Все рассмотренные ранее типы данных обладали одним общим свойством - число их компонентов конечно и заранее фиксировано. Однако, существует достаточно ...

  • Использование рекурсии в PHP
  • ... и очень объемным. Ну а если там появится небольшая ошибка... (дальше, я думаю, объяснять не стоит). ------------------------- Эту задачу достаточно легко решить с помощью рекурсии. Пишем небольшую функцию: function tree($uid, $conn) { $sql = "SELECT * FROM x_table WHERE parent_id=$uid" ...

  • VB, MS Access, VC++, Delphi, Builder C++ принципы(технология), алгоритмы программирования
  • ... ‑либо образом. Часто требуется сортировать данные несколькими различными способами. Во‑вторых, многие алгоритмы сортировки являются интересными примерами программирования. Они демонстрируют важные методы, такие как частичное упорядочение, рекурсия, слияние списков и хранение двоичных ...

  • ЛИСП
  • ... довольно широко используется как под управлением UNIX, так и под управлением VAX/VMS и в настоящее время является наиболее часто используемой версией Лиспа для систем разделения времени. Кроме того, он широко используется и на 32-битовых микро-ЭВМ и рабочих станциях, работающих под управлением UNIX ...

  • Логическое и функциональное программирование
  • ... (8) следует, что в M нет двух неравных натуральных чисел. Доказательство закончено. 3.2 Рекурсия   Особое место для систем функционального программирования приобретает рекурсия, поскольку она позволяет учитывать значения функции на предыдущих шагах. С теоретической точки зрения рекурсивные ...

  • Построение реалистичного изображения методом обратной трассировки лучей
  • ... уходит в свободное пространство, то на этом трассировка для этого луча заканчивается. При практической реализации метода обратной трассировки вводят ограничения. Некоторые из них необходимы, чтобы можно было в принципе решить задачу синтеза изображения, а некоторые ограничения позволяют значительно ...

  • Язык логического программирования Visual Prolog
  • ... числами. Он начинается с имени, называемого функтором (в данном случае date), за которым следуют три аргумента. Функтор в Visual Prolog — не то же самое, что функция в других языках программирования; это просто имя, которое определяет вид составного объекта данных и объединяет вместе его аргументы ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info