Поляризационные приборы

Заказать работу

Московский ордена Ленина, ордена Октябрьской
Революции и ордена Трудового Красного Знамени
ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ
имени Н.Э.Баумана.

________________________________________________


Факультет РЛ

Кафедра РЛ3


Реферат
по дисциплине


"Поляризационные
приборы"


студентки

Сальниковой Любови Юрьевны

группа РЛ 3-101.


Преподаватель

Зубарев Вячеслав Евгеньевич


Введение

Поляризационные приборы основаны на явлении поляризации света и предназначены для получения поляризованного света и изучения тех или иных процессов, происходящих в поляризованных лучах.

Поляризационные приборы широко применяют в кристаллографии и петрографии для исследования свойств кристаллов; в оптической промышленности для определения напряжений в стекле; в машиностроении и приборостроении для изучения методом фотоупругости напряжений в деталях машин и сооружений; в медицине; в химической, пищевой, фармацевтической промышленности для определения концентрации растворов. Поляризационные приборы получили распространение также для изучения ряда явлений в электрическом и магнитном поле.

Приборы для определения внутренних натяжений

Т-образные установки МИСИ

Т-образные установки МИСИ предназначаются для изучения деформации методом оптически чувствительных покрытий.

В полярископах Т-образного вида (рис. 1) свет от источника 1 проходит поляризатор 2, отражается от полупрозрачного зеркала 3, проходит оптически чувствительное покрытие 4 и, отразившись от поверхности образца 5, входит в анализаторную часть установки. Она содержит анализатор 8, сменные компенсатор 6 и пластинку, 7 в 1/4 волны и экран полярископа 9.

Рис. 1. Схема Т-образного полярископа

Если измерение проводится в точке по методу компенсации, то перед анализатором устанавливают компенсатор. При фиксации изохроматической картины по полю перед анализатором устанавливают пластинку в 1/4 волны.

В соответствии со схемой, представленной на рис. 1, разработана Т-образная установка (рис. 2), получившая наименование отражательного полярископа.


Рис. 2. Отражательный полярископ МИСИ по Т-образной схеме.Источник света 1 (лампа ДРШ-250) с помощью конденсора 2 проецируется на диафрагму 4 (диаметр отверстия 2 мм), помещенную в фокусе объектива 8.

Для снижения влияния инфракрасной радиации источника в схему введен теплофильтр 3. Расходящийся плоскополяризованный световой поток после диафрагмы 4 проходит поляризатор 5, пластинку 6 в 1/4 волны, светофильтр 7 и попадает на объектив 8 (фокусное расстояние 300 мм). После объектива свет параллельным пучком проходит две полупрозрачные пластины 9 и 10, оптически чувствительное покрытие 11 и попадает на образец 12. После отражения в обратном ходе свет попадает в анализаторную часть установки, где объективом 13 фокусируется на диафрагму 16. Поляризацион­ная картина после дополнительного светофильтра 14 и анализатора 15 рассматривается на экране полярископа l7.

Рис. 3. Схема V-образного полярископа

К установкам данного типа относятся также отражательный полярископ OП-2, переносный малогабаритный полярископ ОП-3 и др.

V-образные полярископы

V-образные полярископы используются для тех же целей, что и Т-образные. В полярископах V-образного вида (рис. 3) естественный монохроматический свет от источника 1 проходит поляризатор 2, становясь при этом плоскополяризованным. Проходя пластинку 3 в 1/4 волны и оптически чувствительное покрытие 4, свет отражается от объекта исследования 5 (от пластически деформируемого образца), проходит вторую пластинку 6 в 1/4 волны, анализатор 7 и образует изохроматическую картину на экране полярископа 8.

Для получения картины хорошего качества варьируется толщина покрытия 4 (в пределах 0,5 — 1,5 мм и угол a между оптическими осями поляризаторной и анализаторной части (в пределах 6°ё15°)

Рис. 4. Схема кругового поляриметра СМ

Освещение объекта может осуществляться как параллельным, так и расходящимся пучком поляризованного света.

Приборы для определения угла поворота плоскости поляризации

Круговой поляриметр СМ

Круговой поляриметр СМ (рис. 4) предназначен для определения угла поворота плоскости поляризации в жидких оптически активных веществах.

Осветитель 1 (лампа накаливания или натриевая лампа ДНаО140) устанавливается в фокальной плоскости оптической системы 8. В конструкции узла осветителя предусмотрены подвижки для установки нити накала лампы на оптической оси. При работе с лампой накаливания перед оптической системой 3 вводится желтый светофильтр 2. Параллельный монохроматический пучок лучей, выходящий из системы 3, проходит через поляризатор 4 (поляроид, заклеенный между двумя стеклами), кварцевую пластинку 5, создающую совместно с поляроидом полутеневую картину с тройным полем зрения, и кварцевую кювету 6 с исследуемым раствором. Обычно длина кюветы выбирается такой, чтобы концентрации 10-3 кг/см3 соответствовал угол поворота плоскости поляризации y = 1°.

После кюветы расположен анализатор 7, аналогичный поляризатору 4, и телескопическая система, состоящая из объектива 10 и окуляра 11, через который ведется наблюдение при уравнивании освещенностей частей поля зрения.

Отсчет осуществляется по градусной шкале 8 неподвижного лимба (с оцифровкой от 0° до 360°) с помощью двух диаметрально противоположных нониусов 9 (шкалы нониусов имеют по 20 делений; цена одного деления 0,05°). Из показаний двух нониусов берут среднее значение (для учета эксцентриситета лимба). Отсчет снимается при наблюдении лимба и нониуса через лупы 12.

Автоматический спектрополяриметр


Рис. 5. Схема автоматического спектрополяриметраАвтомати­ческий спектрополяриметр (рис. 5) предназначен для измерения угла поворота плос­кости поляризации в диапазоне длин волн 0,24ё0,60 мкм.

Источник света 1 сменный — лампа накаливания при работе в видимой части спектра и ртутная лампа сверхвысокого давления для измерения в ультрафиолетовой области. Излучение от лампы 1 проходит через двойной монохроматор 2 (с зеркальной оптикой и кварцевыми призмами), попадает на электромеханический поляризатор-модулятор 4, проходит исследуемый образец 5, анализатор 6 и попадает на фотоумножитель 7.

В зависимости от угла между направлениями колебаний, пропускаемых поляризатором и анализатором, меняется частота переменной составляющей потока, попадающего на фотоумножитель.

Сигнал, преобразованный в электрический и усиленный в усилителе 8, питает управляющую обмотку реверсного двигателя, который через редуктор вращает анализатор 6 до тех пор, пока из сигнала не исчезнет первая гармоника. Вращение анализатора регистрируется на самописец 3, связанном передающим устройством со шкалой длин волн монохроматора.

С помощью описанного прибора измеряется вращательная дисперсия образцов с поглощением до 80%. Предел измеряемых углов вращения ±2°.

Список использованной литературы

Лабораторные оптические приборы: Учебное пособие для приборостроительных и машиностроительных ВУЗов. Г. И. Федотов, Р. С. Ильин, Л. А. Новицкий, В. Е. Зубарев, А. С. Гоменюк.

Оглавление

Введение 3

Приборы для определения внутренних натяжений 3

Т-образные установки МИСИ 3

V-образные полярископы 6

Приборы для определения угла поворота плоскости поляризации 8

Круговой поляриметр СМ 8

Автоматический спектрополяриметр 9

Список использованной литературы 11

Оглавление 11




Московский ордена Ленина, ордена Октябрьской
Революции и ордена Трудового Красного Знамени
ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ
УНИВЕРСИТЕТ
имени Н.Э.Баумана.

________________________________________________


Факультет РЛ

Кафедра РЛ3


Реферат
по дисциплине


"Поляризационные
приборы"


студента

Майорова Павла Леонидовича

группа РЛ 3-101.


Преподаватель

Зубарев Вячеслав Евгеньевич


Введение

Поляризационные приборы основаны на явлении поляризации света и предназначены для получения поляризованного света и изучения тех или иных процессов, происходящих в поляризованных лучах.

Поляризационные приборы широко применяют в кристаллографии и петрографии для исследования свойств кристаллов; в оптической промышленности для определения напряжений в стекле; в машиностроении и приборостроении для изучения методом фотоупругости напряжений в деталях машин и сооружений; в медицине; в химической, пищевой, фармацевтической промышленности для определения концентрации растворов. Поляризационные приборы получили распространение также для изучения ряда явлений в электрическом и магнитном поле.

Приборы для определения внутренних натяжений

Большая поляризационная установка

Большая поляризационная установка (рис. 1) предназначена для исследования напряжений в прозрачных моделях деталей машин и сооружений.

Источник света 1 (кинопроекционная лампа К12 или ртутная лампа СВДШ-250) размещен в фокальной плоскости конденсора 2 (фокусное расстояние 180 мм). Параллельный пучок лучей после конденсора проходит через светофильтр 3, поляризатор 4 (поляроид, вклеенный между защитными стеклами), слюдяную пластинку 5 в 1/4 волны и падает на исследуемый образец 6.

Рис. 1. Схема большой поляризационной установки

После образца образовавшиеся в нем лучи o и e проходят вторую пластинку 7 в 1/4 волны, анализатор 8 (аналогичный поляризатору 7) и падают на объектив 9 (фокусное расстояние 400 мм), который изображает источник света в плоскости апертурной диафрагмы 10 (ирисовая диафрагма фотозатвора; раскрытие диафрагмы от 2 до 4 мм при ртутной лампе, раскрытие диафрагмы полное до 20 мм для кинопроекционной лампы). Одновременно объектив 9 проецирует изображение образца на матовое стекло 15 при помощи откидного зеркала 11 или на фотопластинку 12.

Интерференционную картину наблюдают через защитное стекло 14 и зеркало 16. Ее можно также проецировать с большим увеличением на экране 13.

Поляризатор, анализатор и пластинки в 1/4 волны вращаются в пределах 0ё90°; угол поворота отсчитывается по шкале с ценой деления 1°. Пластинки в 1/4 волны можно выводить из оптической схемы.

Конструктивно прибор выполнен в виде отдельных узлов: осветитель, в котором смонтированы детали 1—5; нагрузочное устройство, включающее образец 6; фотокамера, содержащая затвор с диафрагмой 10 и оптические детали 7—9 и 11—16, рассчитанная на фотопластинки размером 13ґ18 м.

Значительное усовершенствование процесса поляризационных измерений и повышение точности достигается при использовании объективных методов измерения. В качестве примеров приборов такого типа рассмотрим схему фотоэлектрического поляриметра.

Фотоэлектрический модуляционный поляриметр

Фотоэлектрический модуляционный поляриметр (рис. 2) позволяет измерять в исследуемом объекте разность фаз лучей о и е, меняющуюся во времени.

Лучистый поток от ртутной лампы 1 сверхвысокого давления проходит через иитерференционный светофильтр 2 (с максимумом пропускания при l=0,436 мкм и l=0,546 мкм), поляризатор 3 и исследуемый объект 4, ориентированный так, что направления колебаний в лучах о и е составляют углы p/4 с направлением колебаний в луче, вышедшем из поляризатора. Выходящий из объекта 4 эллиптически поляризованный свет попадает на пластину 5, изготовленную из кристалла ADP1, вырезанную так, что ее плоскости перпендикулярны оптической оси.

Рис. 2. Схема фотоэлектрического модуляционного поляриметра

Введение пластины 5 позволяет модулировать проходящий через нее лучистый поток, так как на кристалле ADP очень удобно реализовать эффект Поккельса. При приложении к пластине 5 переменного электрического напряжения в направлении, параллельном оси лучистого потока и оптической оси кристалла, последний становится двухосным. Новые оптические оси образуют симметричные углы p/4 с прежним направлением оси. Следовательно, после приложения напряжения к пластине 5 проходящий через нее свет претерпевает двойное лучепреломление. Возникающая при этом разность фаз пропорциональна напряжению электрического поля и не зависит от толщины пластины 5. В связи с возникающей переменной разностью фаз эллиптически поляризованный свет периодически меняет форму эллипса. Следовательно, на выходе компенсатора 6 (в схеме используется компенсатор Сенармона) плоскость линейно поляризованного света колеблется относительно среднего положения. После анализатора 11 модулированный поток света попадает на фотоумножитель l0. Из фотоумножителя ток с основной частотой, соответствующей первой гармонике сигнала, поступает в усилитель 8 и приводит в действие сервомотор 9, поворачивающий анализатор 1l до тех пор, пока в сигнале имеется первая гармоника. Остановка соответствует положению анализатора, при котором на фотоумножитель падает минимальный поток излучения.

Самописец 7 фиксирует углы поворота анализатора, причем измеряемая разность фаз равна удвоенному углу поворота анализатора.

Погрешность измерения составляет в среднем приблизительно 20'.0

Полярископ-поляриметр ПКС-56

Полярископ-поляриметр ПКС-56 (рис. 3) служит для измерения двойного лучепреломления в стекле. Он состоит из источника света 1 (лампа накаливания), матового стекла 2, поляризатора 3 (поляроид, вклеенный между стеклами), пластинки 5 в 1/4 волны, анализатора 6 (аналогичного поляризатору 3) и светофильтра 7 (на длину волны 0,54 мкм).


Рис. 3. Схема полярископа-поляриметра ПКС-56Порядок измерения на приборе следующий: скрещивают поляризатор и анализатор (отсчет по лимбу анализатора 0°, поле зрения темное); устанавливают образец 4 (если он обладает двойным лучепреломлением, то в поле зрения наблюдается просветление); поворачивают анализатор до максимального потемнения в середине образца; по лимбу отсчитывают угол поворота Db анализатора.

Зная Db, можно определить из соотношения

где l — толщина образца в направлении просмотра.

При l=10 мм погрешность измерения составляет ±3Ч10-7. С увеличением l погрешность уменьшается.

Переносный малогабаритный поляриметр
ИГ-86

Рис. 4. Переносный малогабаритный поляриметр ИГ-86

Переносный малогабаритный поляриметр ИГ-86 (рис. 4) предназначен для визуального исследования напряженного состояния изделий с помощью оптически чувствительных покрытий. Он позволяет наблюдать интерференционную картину в условиях плоской и круговой поляризации и измерять оптическую разность хода как методом сопоставления цветов, так и компенсационным методом.

Источник света 1 (лампа СЦ-61) размещен в фокусе объектива 3. Защитные стекла 2, 7 и 12 предохраняют прибор от попадания в него загрязнений. Параллельный пучок лучей проходит поляризационный светофильтр (поляризатор 4), полупрозрачное зеркало 8 и, отразившись от светоделительного слоя, падает на оптически чувствительное покрытие 6, нанесенное на исследуемый объект 5. После отражения от покрытия свет попадает в анализаторный узел прибора, проходит компенсатор 9, анализатор 10 (аналогичный поляризатору 4) и попадает в зрительную трубу (сменное увеличение 2 и 10ґ) со шкалой в совмещенной фокальной плоскости объектива 11 и окуляра 13. Перед глазной линзой окуляра и выходным зрачком 15 устанавливается светофильтр 14. Такая оптическая схема получила наименование Т-образной схемы.

Предел измерения оптической разности хода — от 0 до 5 интерференционных порядков. Погрешность измерения — 0,05 интерференционных порядков.

Габариты прибора 400ґ400ґ800 мм; масса около 2 кг.

Список использованной литературы

Лабораторные оптические приборы: Учебное пособие для приборостроительных и машиностроительных ВУЗов. Г. И. Федотов, Р. С. Ильин, Л. А. Новицкий, В. Е. Зубарев, А. С. Гоменюк.

Оглавление

Введение 3

Приборы для определения внутренних натяжений 3

Большая поляризационная установка 3

Фотоэлектрический модуляционный поляриметр 5

Полярископ-поляриметр ПКС-56 8

Переносный малогабаритный поляриметр
ИГ-86 9

Список использованной литературы 11

Оглавление 11


1 Кристалл ADP — искусственный одноосный кристалл дигидрофосфата аммония (NH4H2PO4).

Другие материалы

  • Современные достижения и тенденции развития приборов и аппаратов для научной и практической дисциплины
  • ... , входящих в эту РТС и в окружающие ее РТС.  Современные тенденции в развитии приборов и аппаратов для научных и клинических исследований базируются как на фундаментальных знаниях биологической и медицинской науки, так и на широком использовании достижений физики, химии, информационной техники, ...

  • Оптические приборы
  • ... способностью и незначительным поглощением. Для этого, однако, необходимо четное число слоев. В табл. указаны прозрачность и рассеяние света оптической системой, состоящей из некоторого числа поверхностей, в предположении, что на каждой поверхности отражается с,=5% или Q1=I% падающего на нее света. ...

  • История развития научных и аналитических приборов
  • ... ; газового состава инфракрасным излучением) построена целая гамма газоаналитических приборов, принцип действия которых базируется на регистрации поглощения ИК-излучения газами и автоматического преобразования аналитического сигнала к единицам приведенного коэффициента поглощения. Степень поглощения ...

  • Основы конструирования элементов приборов
  • ... характеризуется вносимым в тракт затуханием, т.е. отношением мощностей на входе и выходе. Рисунок 1 – Волноводный аттенюатор. В данном случае прибор относится к числу аттенюаторов, обеспечивающих затухание за счет поглощения мощности материалом, помещенным в электромагнитное поле. Схема ...

  • Поляриметрические методы анализа
  • ... фаз равна удвоенному углу поворота анализатора. 3. Методические указания к выполнению лабораторной работы “Поляриметрическое определение концентрации вещества в растворе. Проверка закона Био при разных длинах волн” ...

  • Анализ погрешностей волоконно-оптического гироскопа
  • ... Ленточный график работ   5. Безопасность жизнедеятельности и охрана труда Дипломная работа посвящена анализу погрешностей волоконно-оптического гироскопа. В ходе ее выполнения были проведены необходимые расчеты и сделаны выводы, которые могут ...

  • Оптические методы исследования процессов горения
  • ... -458 Прибор интерференционно-теневой ИАБ-458 предназначен для качественных и количественных исследований теневым методом неоднородностей оптически прозрачных сред. В приборе реализуются следующие методы исследования: светящейся точки, щели и ножа, щели и нити, сдвиговой интерферометрии и голографии ...

  • Измерения параметров электромагнитных волн на сверхвысоких частотах
  • ... которых соответствуют сумме и разности амплитуд падающей и отраженной волн. Таблица 1 Параметры измерительных линий Тип прибора Диапазон частот, ГГц Собственный КСВ Погрешность измерений КСВ, % (КСВ<2) Размеры сечения ВЧ-тракта, мм Р1-22 Р1-3 P1-7 Р1-20 Р1-13А ...

  • Устройства генерирования и канализации субмиллиметровых волн
  • ... на сотни километров, поскольку вся излучаемая энергия может быть перехвачена приемным устройством с апертурой приемлемых размеров. В диапазоне субмиллиметровых волн отношение допустимых размеров апертур к длине волны заметно уменьшается, тем не менее в ряде случаев подобные квазиоптические линии ...

  • Православие, наука, культура
  • ... и коллективного собственника, национальной промышленности и сельского хозяйства. Но самое главное - единая культура и единое образование, которые обеспечивались и будут обеспечиваться единой историей в динамике к добру и Православием. Это не значит, что мусульманство и буддизм должны быть отвергнуты ...

  • Стереотелевизионные системы
  • ... 12 В подается на телекамеру через коммутационный разъем от внешнего источника питания, не входящего в состав разрабатываемой стереотелевизионной системы. В соответствии с «Правилами устройства электроустановок» (ПУЭ п. 1.1.3.) устройство относится к разряду электроустановок с напряжением до 1000 В ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info