Парадокс Зенона

Заказать работу

Движение невозможно. В частности, невозможно пересечь комнату, так как для этого нужно сначала пересечь половину комнаты, затем половину оставшегося пути, затем половину того, что осталось, затем половину оставшегося...

Зенон Элейский принадлежал к той греческой философской школе, которая учила, что любое изменение в мире иллюзорно, а бытие едино и неизменно. Его парадокс (сформулированный в виде четырех апорий (от греч. aporia «безвыходность»), породивших с тех пор еще примерно сорок различных вариантов) показывает, что движение, образец «видимого» изменения, логически невозможно.

Большинству современных читателей парадокс Зенона знаком именно в приведенной выше формулировке (ее иногда называют дихотомией — от греч. dichotomia «разделение надвое»). Чтобы пересечь комнату, сначала нужно преодолеть половину пути. Но затем нужно преодолеть половину того, что осталось, затем половину того, что осталось после этого, и так далее. Это деление пополам будет продолжаться до бесконечности, из чего делается вывод, что вам никогда не удастся пересечь комнату.

Апория, известная под названием Ахилл, еще более впечатляюща. Древнегреческий герой Ахилл собирается состязаться в беге с черепахой. Если черепаха стартует немного раньше Ахилла, то ему, чтобы ее догнать, сначала нужно добежать до места ее старта. Но к тому моменту, как он туда доберется, черепаха проползет некоторое расстояние, которое нужно будет преодолеть Ахиллу, прежде чем догнать черепаху. Но за это время черепаха уползет вперед еще на некоторое расстояние. А поскольку число таких отрезков бесконечно, быстроногий Ахилл никогда не догонит черепаху.

Вот еще одна апория, словами Зенона:

Если что-то движется, то оно движется либо в том месте, которое оно занимает, либо в том месте, где его нет. Однако оно не может двигаться в том месте, которое оно занимает (так как в каждый момент времени оно занимает все это место), но оно также не может двигаться и в том месте, где его нет. Следовательно, движение невозможно.

Этот парадокс называется стрела (в каждый момент времени летящая стрела занимает место, равное ей по протяженности, следовательно она не движется).

Наконец, существует четвертая апория, в которой речь идет о двух равных по длине колоннах людей, движущихся параллельно с равной скоростью в противоположных направлениях. Зенон утверждает, что время, за которое колонны пройдут друг мимо друга, составляет половину времени, нужного одному человеку, чтобы пройти мимо всей колонны.

Из этих четырех апорий первые три наиболее известны и наиболее парадоксальны. Четвертая просто связана с неправильным пониманием природы относительного движения.

Самый грубый и неизящный способ опровергнуть парадокс Зенона — это встать и пересечь комнату, обогнать черепаху или выпустить стрелу. Но это никак не затронет хода его рассуждений. Вплоть до XVII века мыслители не могли найти ключ к опровержению его хитроумной логики. Проблема была разрешена только после того, как Исаак Ньютон и Готфрид Лейбниц изложили идею дифференциального исчисления, которое оперирует понятием предел; после того как стала понятна разница между разбиением пространства и разбиением времени; наконец, после того как научились обращаться с бесконечными и бесконечно малыми величинами.

Возьмем пример с пересечением комнаты. Действительно, в каждой точке пути вам надо пройти половину оставшегося пути, но только на это вам понадобится в два раза меньше времени. Чем меньший путь осталось пройти, тем меньше времени на это понадобится. Таким образом, вычисляя время, нужное для того, чтобы пересечь комнату, мы складываем бесконечное число бесконечно малых интервалов. Однако сумма всех этих интервалов не бесконечна (иначе пересечь комнату было бы невозможно), а равна некоторому конечному числу — и поэтому мы можем пересечь комнату за конечное время.

Такой ход доказательства аналогичен нахождению предела в дифференциальном исчислении. Попробуем объяснить идею предела в терминах парадокса Зенона. Если мы разделим расстояние, которое мы прошли, пересекая комнату, на время, которое мы на это потратили, мы получим среднюю скорость прохождения этого интервала. Но хотя и расстояние, и время уменьшаются (и в конечном счете стремятся к нулю), их отношение может быть конечным — собственно, это и есть скорость вашего движения. Когда и расстояние, и время стремятся к нулю, это отношение называется пределом скорости. В своем парадоксе Зенон ошибочно исходит из того, что, когда расстояние стремится к нулю, время остается прежним.

Но мое любимое опровержение парадокса Зенона связано не с дифференциальным исчислением Ньютона, а с цитатой из скетча «Второго города», комедийного театра в моем родном Чикаго. В этом скетче лектор описывает различные философские проблемы. Дойдя до парадокса об Ахилле и черепахе, он произносит следующее:

Но это же просто смешно. Каждый сидящий в этой комнате может выиграть гонку с черепахой. Даже такой старый и степенный философ, как Бертран Рассел, — даже он может обогнать черепаху. Но если он и не сможет победить ее, он сможет ее перехитрить!

По-моему, неплохой итог для всего сказанного выше.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://elementy.ru/

Другие материалы

  • Зенон Элейский
  • ... сводится на нет «ложной посылкой.., будто невозможно пройти или коснуться бесконечного числа точек за конечный период времени». Также и Фемистий полагает, что «Зенон либо в самом деле не знает, либо делает вид, когда полагает, что ему удалось покончить с движением, сказав, что невозможно движущемуся ...

  • Логические парадоксы
  • ... систематического анализа. Теперь «Лжец» — этот типичный бывший софизм — нередко именуется королем логических парадоксов. Ему посвящена обширная научная литература. И тем не менее, как и в случае многих других парадоксов, остается не вполне ясным, какие именно проблемы скрываются за ним и как следует ...

  • Апории Зенона и первая теоретическая постановка проблемы бесконечности
  • ... отмечает, что уже Аристотель наметил правильный путь решения данной апории Зенона, обратив внимание на то, что пространство и время не актуально разделены бесконечным образом, а лишь потенциально делимы до бесконечности. На эту важную мысль Аристотеля обратил внимание В.И. Ленин, конспектируя « ...

  • Зенон Элейский, его парадоксы и понятия бесконечности
  • ... в своих математических теориях всегда пытались его обойти и исключить. Их затруднения перед явным выражением абстрактных понятий бесконечного и непрерывного,противоположных понятиям конечного и дискретного, ярко проявились в парадоксах Зенона Элейского. Доводами Зенона были “апории” ( ...

  • Парадоксы в науке
  • ... , математические). Несмотря на явное упрощение, именно такое разделение представляется наиболее подходящим и оправданным целями данной работы. 2. Парадоксы в науке   Наука – это сложное явление общественной жизни; её основным назначением является получение объективных знаний о мире. ...

  • О фундаментальной гносеологической роли парадоксов
  • ... разума И.Канта (определенные, правда, самим автором их как только гносеологические). Известны и современные космологические парадоксы. Они косвенно связаны с логическими и математическими. 1. Экспансионный парадокс (Э.Хаббл). Принимая идею бесконечной протяженности, приходим к противоречию с теорией ...

  • О парадоксах философии истории Посидония
  • вочные, но ценные для нас сведения об исторических взглядах Посидония, до сих пор здесь много неясного. В научной литературе можно обнаружить противоречивые утверждения, не способствующие прояснению вопроса о сути философии истории этого крупнейшего представителя Средней Стои. Действительно ли мы ...

  • Понятие времени и проблема континуума (к истории вопроса)
  • ... различных его видов. В своей работе мы коснемся лишь наиболее важных, узловых моментов в истории понятия непрерывности, начиная с античности и кончая XVII–ХVIII вв. Как уже упоминалось, впервые проблема континуума была поставлена Зеноном из Элеи, выявившим парадоксы, возникающие при попытке мыслить ...

  • Логика Космоса (физика античной Греции)
  • ... восхищался Сократом. Но кончилось все чашей цикуты. Нужно было восстановить утраченное единство, соединить логику элеатов, гармонию пифагорейцев и благо Сократа в учении о прекраснейшем Космосе, по образцу и подобию которого только и можно строить жизнь человеческую. В этом должен был заключаться ...

  • Вперёд, к Платону! Все пороки антисубстанциализма
  • ... оперировать различными объёмами памяти, легко и мгновенно связывая суждения в умозаключения, умозаключения - в концепции и т. д. Глава VI. ВСЕ ПОРОКИ НЕКЛАССИЧЕСКОГО АНТИСУБСТАНЦИАЛИЗМА   § 1. Субъективная реальность как эмпирический феномен Декартовская формула «Cogito ergo sum» ...

  • Історія математики Греції
  • ... малі), але потім він публікував їх, дотримуючи самі тверді вимоги строгості. Достаток обчислень в Архімеда відрізняє його від більшості творчих математиків Греції. Це додає його працям, при всіх їхній типово грецьких особливостях, східний відтінок. Такий відбиток помітний у його "Задачі про ...

  • Космология Аристотеля
  • ... , о движении по природе, естественном, и движении против природы, насильственном,- это важные моменты космологии Аристотеля. Мир состоит из пяти стихий, "элементов". Физика Аристотеля качественная. Повторяя общие представления античной натурфилософии, не приемля атомизм, он сводит все ...

  • Философия атомизма Демокрита
  • ... , что Демокрит был математическим атомистом в этом смысле», - говорит Ферли во введении к своей работе. Подробно проанализировав античные свидетельства об атомизме Демокрита, Ферли в заключение констатирует: «Рассмотрение свидетельств подтверждает тот взгляд, что Левкипп и Демокрит были более чем ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info