Основы математического анализа

Узнать стоимость написания работы

1. Множества и операции над множествами

Напомним основные обозначения, понятия, относящиеся к множествам, которых будем придерживаться дальше.

Начнем с основного понятия, которое встречается практически в каждом разделе математики - это понятие множества.

Множество - это совокупность, набор элементов, объединенных общими свойствами.

Множества обозначаются заглавными латинскими буквами , а элементы множества строчными латинскими буквами .

Запись означает, что есть множество с элементами , которые связаны между собой какой-то функцией .

Замечание. Элементы в множество входят по одному разу, т.е. без повторений.

Основные операции:

1.  Принадлежность элемента множеству:

где -- элемент и -- множество (элемент принадлежит множеству  ).

2.  Непринадлежность элемента множеству:


где -- элемент и -- множество (элемент не принадлежит множеству  ).

3.  Объединение множеств: .

Объединением двух множеств и называется множество , которое состоит из элементов множеств и , т.е.

 или

4.  Пересечение множеств: .

Пересечением двух множеств и называется множество , которое состоит из общих элементов множеств и , т.е.

 и

5.  Разность множеств: .

Разностью двух множеств и , например, множество минус множество , называется множество , которое состоит из элементов множества , которых нет в множестве , т.е.

 и

6.  Симметрическая разность множеств:

.


Симметрической разностью двух множеств и называется множество , которое состоит из не общих элементов множеств и , т.е.

7.  Дополнение множества: .

Если предположим, что множество является подмножеством некоторого универсального множества , тогда определяется операция дополнения:

 и

8.  Вхождение одного множества в другое множество: .

Если любой элемент множества является элементом множества , то говорят, что множество есть подмножество множества (множество входит в множество ).

9.  Не вхождение одного множества в другое множество: .

Если существует элемент множества , который не является элементом множества , то говорят, что множество не подмножество множества (множество не входит в множество ).

2. Первая и вторая теорема Вейерштрасса

Теорема (первая теорема Вейерштрасса) Если функция непрерывна на сегменте, то она ограничена на нем. Доказательство: методом от противного, воспользуемся свойством замкнутости сегмента [a;b]. Из любой последовательности (xn) этого сегмента можем выделить подпоследовательность xnk , сходящуюся к x0∈[a;b] . Пусть f не ограничена на сегменте [a;b], например, сверху, тогда для всякого натуральногоn∈N найдется точка xn∈[a;b] , что f(xn)>n. Придавая n значения 1,2,3,{\ldots}, мы получим последовательность (xn) точек сегмента [a;b], для которых выполнено свойство f(x1)>1,f(x2)>2,f(x3)>3,...,f(xn)>n... Последовательность (xn) ограничена и поэтому из нее по теореме можно выделить подпоследовательность(xnk) , которая сходится к точке x0∈[a;b] : limk→∞xnk=x0 (1) Рассмотрим соответствующую последовательность (f(xnk)) . С одной стороны f(xnk)>nk и поэтому limk→∞f(xnk)=+∞ (2), С другой стороны, учитывая определение непрерывной функции по Гейне из (1) будем иметь limk→∞f(xnk)=f(x0) (3) Получаем равенства (2) и (3) противоречат теореме (о единственности предела). Это противоречие и доказывает справедливость теоремы. Аналогично доказывается ограниченность функции снизу. Ч.Т.Д.

Замечание 1 Таким образом, если f непрерывна на [a;b], то ее множество значений ограничено и поэтому существует конечные верхняя и нижняя грань функции. c=infx∈[a;b]f(x),d=supx∈[a;b]f(x), но открыт вопрос о достижении функции своих граней. Замечание 2 Если слово сегмент в условии теоремы заменить словом интервал или полуинтервал, то теорема может и нарушиться. Пример, y=tgx,tgx∈C((−2π;2π)) , но функция не ограничена на этом интервале.

Теорема (вторая теорема Вейерштрасса) Если функция непрерывна на сегменте, то она достигает на нем своих граней (т.е. непрерывная на сегменте функция принимает свое наибольшее и наименьшее значения). Доказательство: Пусть f(x)∈C([a;b]) , c=infx∈[a;b]f(x), d=supx∈[a;b]f(x). По первой теореме Вейерштрасса c,d∈R . Докажем, что f достигает на [a;b] своих граней, т.е. найдутся такие точки x1,x2∈[a;b] , чтоf(x1)=c,f(x2)=d. Докажем, например, существование точки x2.

По определению верхней грани имеем (∀x∈[a;b])(f(x)=d) . Предположим противное, т.е. точки x2, в которой f(x2)=dна [a;b], тогда на [a;b] выполняется условиеf(x)<d или d−f(x)>0 . Далее введем вспомогательную функцию ϕ(x)=1d−f(x). ϕ(x)на [a;b] положительна и непрерывна (как отношение двух непрерывных на [a;b] функций и d−f(x)/=0) , поэтому по первой Т. Вейерштрасса ϕ(x)на [a;b] ограничена. Это означает, что при некотором М>0 (∀x∈[a;b])(0<1d−f(x)≤M) , отсюда имеем f(x)≤d−1M<d . Полученное неравенство противоречит тому, что d является верхней гранью функции f(x) на [a;b], т.е. наименьшим из верхних границ. Полученное противоречие и означает существование точки x2 такой, что f(x2)=d.

Аналогично доказывается существование точки x1∈[a;b] , такой что f(x1)=c.

Следствие Если f непрерывна и непостоянна на [a;b], то образ этого отрезка [a;b] при отображении f будет так же отрезок, т.е. непрерывный непостоянный образ отрезка есть отрезок. Доказательство: В самом деле образом отрезка [a;b] при отображении f будет отрезок [с;d], где c=inf[a;b]f(x)=min[a;b]f(x), а d=sup[a;b]f(x)=max[a;b]f(x), что следует из второй теоремы Больцано-Коши и второй теоремы Вейерштрасса Ч.Т.Д.

3. Теорема Ферма и Ролля

Пусть функция f(x) имеет на множестве E точку экстремума x₀?E, причём множество E содержит некоторую β- окрестность, что E=(x- β;x+ β) точки x. Тогда либо f(x) имеет в точке x производную, равную 0, то есть f´(x)=0 , либо производная в точке x не существует. Теорема Ролля Если функция f(x) непрерывна на отрезке (a;b), дифференцируема во всех внутренних точках этого отрезка и на концах x=a и x=b обращается в нуль, [f(a)=f(b)=0], то внутри отрезка (a;b) существует п окрпйней мере одна тоска x=c, a<c<b, в которой производная f´(x) обращается в нуль, т.е. f´(c)=0

Метод математической индукции

Метод математической индукции является важным способом доказательства предложений (утверждений), зависящих от натурального аргумента.

Метод математической индукции состоит в следующем:

Предложение (утверждение) P(n), зависящее от натурального числа n, справедливо для любого натурального n если:

1.  P(1) является истинным предложением (утверждением);

2.  P(n) остается истинным предложением (утверждением), если n увеличить на единицу, то есть P(n + 1) - истинное предложение (утверждение).

Таким образом метод математической индукции предполагает два этапа:

1.  Этап проверки: проверяется, истинно ли предложение (утверждение) P(1).

2.  Этап доказательства: предполагается, что предложение P(n) истинно, и доказывается истинность предложения P(n + 1) (n увеличено на единицу).

Замечание 1. В некоторых случаях метод математической индукции используется в следующей форме:

Пусть m - натуральное число, m > 1 и P(n) - предложение, зависящее от n, n ≥ m.

Если

1.  P(m) справедливо;

2.  P(n) будучи истинным предложением, влечет истинность предложения P(n + 1) для любого натурального n, n ≥ m, тогда P(n) - истинное предложение для любого натурального n, n ≥ m.

В дальнейшем рассмотрим примеры применения метода математической индукции.

Пример 1. Доказать следующие равенства

g) формула бинома Ньютона:

где n Î N.

Решение. a) При n = 1 равенство примет вид 1=1, следовательно, P(1) истинно. Предположим, что данное равенство справедливо, то есть, имеет место

.

Следует проверить (доказать), что P(n + 1), то есть


истинно. Поскольку (используется предположение индукции)

получим

то есть, P(n + 1) - истинное утверждение.

Таким образом, согласно методу математической индукции, исходное равенство справедливо для любого натурального n.

Замечание 2. Этот пример можно было решить и иначе. Действительно, сумма 1 + 2 + 3 + ... + n есть сумма первых n членов арифметической прогрессии с первым членом a1 = 1 и разностью d = 1. В силу известной формулы , получим

b) При n = 1 равенство примет вид: 2·1 - 1 = 12 или 1=1, то есть, P(1) истинно. Допустим, что имеет место равенство

1 + 3 + 5 + ... + (2n - 1) = n2

и докажем, что имеет место P(n + 1):

1 + 3 + 5 + ... + (2n - 1) + (2(n + 1) - 1) = (n + 1)2


или

1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = (n + 1)2.

Используя предположение индукции, получим

1 + 3 + 5 + ... + (2n - 1) + (2n + 1) = n2 + (2n + 1) = (n + 1)2.

Таким образом, P(n + 1) истинно и, следовательно, требуемое равенство доказано.

Замечание 3. Этот пример можно решить (аналогично предыдущему) без использования метода математической индукции.

c) При n = 1 равенство истинно: 1=1. Допустим, что истинно равенство

и покажем, что

то есть истинность P(n) влечет истинность P(n + 1). Действительно,

и, так как 2n2 + 7n + 6 = (2n + 3)(n + 2), получим


и, следовательно, исходное равенство справедливо для любого натурального n.

d) При n = 1 равенство справедливо: 1=1. Допустим, что имеет место

и докажем, что

Действительно,

e) Утверждение P(1) справедливо: 2=2. Допустим, что равенство

справедливо, и докажем, что оно влечет равенство


Действительно,

Следовательно, исходное равенство имеет место для любого натурального n.

f) P(1) справедливо: 1/3 = 1/3. Пусть имеет место равенство P(n):

.

Покажем, что последнее равенство влечет следующее:

Действительно, учитывая, что P(n) имеет место, получим

Таким образом, равенство доказано.

g) При n = 1 имеем a + b = b + a и, следовательно, равенство справедливо.


Пусть формула бинома Ньютона справедлива при n = k, то есть,

Тогда

Используя равенство получим

Пример 2. Доказать неравенства

a) неравенство Бернулли: (1 + )n ≥ 1 + n,  > -1, n  N.

b) x1 + x2 + ... + xn ≥ n, если x1x2· ... ·xn = 1 и xi > 0, .

c) неравенство Коши относительно среднего арифемтического и среднего геометрического

 где xi > 0, , n ≥ 2.

d) sin2na + cos2na ≤ 1, n Î N.

e)

f) 2n > n3, n Î N, n ≥ 10.

Решение. a) При n = 1 получаем истинное неравенство


1 + a ≥ 1 + a.

Предположим, что имеет место неравенство

(1 + a)n ≥ 1 + na (1)

и покажем, что тогда имеет место и

(1 + a)n + 1 ≥ 1 + (n + 1)a.

Действительно, поскольку a > -1 влечет a + 1 > 0, то умножая обе части неравенства (1) на (a + 1), получим

(1 + a)n(1 + a) ≥ (1 + na)(1 + a)

или

(1 + a)n + 1 ≥ 1 + (n + 1)a + na2

Поскольку na2 ≥ 0, следовательно,

(1 + a)n + 1 ≥ 1 + (n + 1)a + na2 ≥ 1 + (n + 1)a.

Таким образом, если P(n) истинно, то и P(n + 1) истинно, следовательно, согласно принципу математической индукции, неравенство Бернулли справедливо.

b) При n = 1 получим x1 = 1 и, следовательно, x1 ≥ 1 то есть P(1) - справедливое утверждение. Предположим, что P(n) истинно, то есть, если adica, x1,x2,...,xn - n положительных чисел, произведение которых равно единице, x1x2·...·xn = 1, и x1 + x2 + ... + xn ≥ n.

Покажем, что это предложение влечет истинность следующего: если x1,x2,...,xn,xn+1 - (n + 1) положительных чисел, таких, что x1x2·...·xn·xn+1 = 1, тогда x1 + x2 + ... + xn + xn + 1 ≥ n + 1.

Рассмотрим следующие два случая:

1) x1 = x2 = ... = xn = xn+1 = 1. Тогда сумма этих чисел равна (n + 1), и требуемое неравество выполняется;

2) хотя бы одно число отлично от единицы, пусть, например, больше единицы. Тогда, поскольку x1x2· ... ·xn·xn + 1 = 1, существует еще хотя бы одно число, отличное от единицы (точнее, меньше единицы). Пусть xn + 1 > 1 и xn < 1. Рассмотрим n положительных чисел

x1,x2,...,xn-1,(xn·xn+1).

Произведение этих чисел равно единице, и, согласно гипотезе,

x1 + x2 + ... + xn-1 + xnxn + 1 ≥ n.

Последнее неравенство переписывается следующим образом:

x1 + x2 + ... + xn-1 + xnxn+1 + xn + xn+1 ≥ n + xn + xn+1

или

x1 + x2 + ... + xn-1 + xn + xn+1 ≥ n + xn + xn+1 - xnxn+1.

Поскольку


(1 - xn)(xn+1 - 1) > 0,

n + xn + xn+1 - xnxn+1 = n + 1 + xn+1(1 - xn) - 1 + xn = = n + 1 + xn+1(1 - xn) - (1 - xn) = n + 1 + (1 - xn)(xn+1 - 1) ≥ n + 1.

Следовательно,

x1 + x2 + ... + xn + xn+1 ≥ n+1,

то есть, если P(n) справедливо, то и P(n + 1) справедливо. Неравенство доказано.

Замечание 4. Знак равенства имеет место тогда и только тогда, когда x1 = x2 = ... = xn = 1.

c) Пусть x1,x2,...,xn - произвольные положительные числа. Рассмотрим следующие n положительных чисел:

Поскольку их произведение равно единице:

согласно ранее доказанному неравенству b), следует, что

откуда


Замечание 5. Равенство выполняется если и только если x1 = x2 = ... = xn.

d) P(1) - справедливое утверждение: sin2a + cos2a = 1. Предположим, что P(n) - истинное утверждение:

sin2na + cos2na ≤ 1

и покажем, что имеет место P(n + 1). Действительно,

sin2(n + 1)a + cos2(n + 1)a = sin2na·sin2a + cos2na·cos2a < sin2na + cos2na ≤ 1

(если sin2a ≤ 1, то cos2a < 1, и обратно: если cos2a ≤ 1, то sin2a < 1). Таким образом, для любого n Î N sin2na + cos2n ≤ 1 и знак равенства достигается лишь при n = 1.

e) При n = 1 утверждение справедливо:  1 < 3/2.

Допустим, что и докажем, что

Поскольку

учитывая P(n), получим


f) Учитывая замечание 1, проверим P(10): 210 > 103, 1024 > 1000, следовательно, для n = 10 утверждение справедливо. Предположим, что 2n > n3 (n > 10) и докажем P(n + 1), то есть 2n+1 > (n + 1)3.

Поскольку при n > 10 имеем или , следует, что

2n3 > n3 + 3n2 + 3n + 1 или n3 > 3n2 + 3n + 1.

Учитывая неравенство (2n > n3), получим

2n+1 = 2n·2 = 2n + 2n > n3 + n3 > n3 + 3n2 + 3n + 1 = (n + 1)3.

Таким образом, согласно методу математической индукции, для любого натурального n Î N, n ≥ 10 имеем 2n > n3.

Пример 3. Доказать, что для любого n Î N

a) n(2n2 - 3n + 1) делится на 6,

b) 62n-2 + 3n+1 + 3n-1 делится на 11.

Решение. a) P(1) - истинное утверждение (0 делится на 6). Пусть P(n) справедливо, то есть n(2n2 - 3n + 1) = n(n - 1)(2n - 1) делится на 6. Покажем, что тогда имеет место P(n + 1), то есть, (n + 1)n(2n + 1) делится на 6. Действительно, поскольку

n(n + 1)(2n + 1) = n(n - 1 + 2)(2n - 1 + 2) = (n(n - 1) + 2n)(2n - 1 + 2) =

= n(n - 1)(2n - 1) + 2n(n - 1) + 2n(2n + 1) = n(n - 1)(2n - 1) + 2n·3n =

= n(n - 1)(2n - 1) + 6n2


и, как n(n - 1)(2n - 1), так и 6n2 делятся на 6, тогда и их сумма n(n + 1)(2n + 1) делится 6.

Таким образом, P(n + 1) - справедливое утверждение, и, следовательно, n(2n2 - 3n + 1) делится на 6 для любого n  N.

b) Проверим P(1): 60 + 32 + 30 = 11, следовательно, P(1) - справедливое утверждение. Следует доказать, что если 62n-2 + 3n+1 + 3n-1 делится на 11 (P(n)), тогда и 62n + 3n+2 + 3n также делится на 11 (P(n + 1)). Действительно, поскольку

62n + 3n+2 + 3n = 62n-2+2 + 3n+1+1 + 3n-1+1 =

= 62·62n-2 + 3·3n+1 + 3·3n-1 = 3·(62n-2 + 3n+1 + 3n-1) + 33·62n-2

и, как 62n-2 + 3n+1 + 3n-1, так и 33·62n-2 делятся на 11, тогда и их сумма 62n + 3n+2 + 3n делится на 11. Утверждение доказано.

Несобственные интегралы

Пусть функция f(x) определена на полуинтервале (a, b] и , ; кроме того

Определение: Несобственным интегралом 1рода от f(x) на (a, b] называется предел:


если этот предел существует. В этом случае говорят, что несобственный интеграл сходится.

Пример:

Если a = 1, то

Следовательно, при a < 1 интеграл

Аналогично определяется несобственный интеграл, если

Определение несобственного интеграла 2 рода:

Пусть :  и существует предел:


Тогда этот предел называется несобственным интегралом 2 рода, т.е.

Пример:

Если a = 1, то

Следовательно, несобственный интеграл

Для исследования сходимости и расходимости несобственных интегралов применяется признак сравнения:

Пусть функция f(x) и g(x) удовлетворяют неравенству: и несобственный интеграл  сходится. Тогда сходится и несобственный интеграл .

Доказательство: В силу сходимости  по критерию Коши для функции , выполняется неравенство . Но тогда, ввиду неравенств:  аналогично неравенство будет справедливо и для функции f(x), т.е.

Следовательно, по критерию Коши существует предел:

,

т.е. этот интеграл сходится.

Замечание1: Аналогичный признак сравнения справедлив и для несобственных интегралов 2 рода.

Замечание2: Отрицанием признака сравнения будет следующее утверждение: если несобственный интеграл  расходится, то расходится и несобственный интеграл


.

Эйлеровы интегралы G(a) и B(a, b).

Определим функцию G(a) равенством:

.

Покажем, что интеграл сходится при a > 0. Представим этот интеграл в виде суммы двух интегралов:

и докажем сходимость каждого из этих интегралов при a > 0.

Обозначим

 и .

Если xÎ(0, 1], то: . Так как интеграл , как это было доказано выше сходится при 1 - a< 1, т.е. при a>0, то по признаку сравнения интеграл  сходится при a>0. Если xÎ[1, + ) , то для некоторой константы c>0 выполняется неравенство: .

Заметим, что


,

т.е. этот интеграл сходится при любых aÎR. Следовательно, функция Эйлера G(a) = G1(a) + G2(a) определена для всех a>0.

Далее, определим функцию

B(a, b) =

и докажем, что эта функция определена для любых a>0 и b>0.

Обозначим:

 и .

Если xÎ(0, 1/2], то . Интеграл  сходится по признаку сравнения 1 - a<1, т.е. при a>0 и при любых значениях b. Заметим, что, если в интеграле B2(a, b) сделать замену t = 1 – x, то мы B1(b, a), который, как мы выяснили, сходится при b>0 и при любых a.

Следовательно, функция Эйлера B(a, b) = B1(a, b) + B2(a, b) определена для любых a>0 и b>0. Отметим (без доказательства) следующие свойства интегралов Эйлера:

1)  G(1) = 1

2)  G(a + 1) = aG(a), a>0

3)  G(n + 1) = n!, nÎN

4)  G(a)G(1 - a) =, 0<a<1

5)  G(1/2) =

6)  B(a, b) =

Пример:

Вычислить интеграл вероятности

.

В силу чётности функции  интеграл вероятности можно представить в виде:

.

Сделав в этом интеграле замену t = x2 , получим следующий интеграл:

Другие материалы

  • Теория вероятности и математическая статистика
  • ... второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность ...

  • Математическая статистика
  • ... сколько в среднем составляет ее значение или, иначе – что мы ожидаем, наблюдая за этой величиной? Ответ на такой вопрос на языке математической статистики состоит в следующем. Если нам известен закон распределения, то, просуммировав произведения значений суммы S на соответствующие каждому значению ...

  • Экономическое планирование методами математической статистики
  • ... ПОЭВМ Комплексная курсовая работа по курсу «Вероятностные процессы и математическая статистика в автоматизированных системах» Тема: «Провести экономическую оценку эффективности работы предприятия. Провести долгосрочное планирование работы методом множественной линейной регрессии. Построить ...

  • Теория математической статистики
  • ... значений лежит в интервале . Свойства дисперсии: 1. Влияние на дисперсию увеличения каждого значения на какую либо константу: , после выполнения математических операций убеждаемся, что дисперсия не изменяется. 2. Изменение дисперсии при умножении каждого исходного значения на константу: , то есть ...

  • Математические суждения и умозаключения
  • ... при рассмотрении o данного вопроса.) Понятно, что в самой математике рассматриваются содержательные высказывания. Устанавливая различные связи и отношения между понятиями, математические суждения утверждают или отрицают какие-либо отношения между объектами и явлениями реальной действительности. ...

  • Математическое моделирование при активном эксперименте
  • ... адекватности. Если заранее пренебречь взаимодействиями высших порядков, то имеется возможность получить математическую модель при меньшем числу опытов, реализовав не весь план ДФЭ, а только его часть (дробную реплику). Эксперимент, реализующий часть (дробную реплику) полного факторного ...

  • Особенности создания математических формул в Web
  • ... quot;3", это означает, что его размеры могут превысить стандартные не более, чем в три раза. 3. Создание математических формул в Web с помощью MathBuilder Программа MathBuilder (рис.1) представляет собой приложение к системе ...

  • Пакеты математических расчетов (работа в Derive)
  • ... времени, который объективно появляется при использовании систем автоматизации математических расчетов, и использовать этот резерв для резкого расширения круга изучаемых задач и методов вычислений. Незаменима роль системы Derive для интенсификации обучения при подготовке к вступительным экзаменам ...

  • Математические методы и модели в конституционно-правовом исследовании
  • ... материалах (анкетах, результатах экспериментов) проявляется действие статистических закономерностей, то применение методов теории вероятностей и математической статистики в конкретном социально-правовом исследовании для анализа и обработки полученных материалов не только желательно, но и необходимо ...

  • Применение точечных и интервальных оценок в теории вероятности и математической статистике
  • ... параметра и составляет теорию статистического оценивания. Выборочная числовая характеристика, применяемая для получения оценки неизвестного параметра генеральной совокупности, называется точечной оценкой. Например, Х – среднее арифметическое, может служить оценкой математического ожидания М (Х) ...

  • «Безвихревая электродинамика». Математическая модель
  • ... собой 3 – мерные компоненты двух 4 – мерных уравнений  (10) , (11) где  (12)  (13) являются исходными элементами математической модели гипотетической безвихревой электродинамики – магнитным и электрическим 4–векторами напряжённости поля. Дальнейшее построение сводится к применению к исходным 4- ...

  • Математические модели в экономике и программировании
  • ... соответствующих неравенств на (-1) можно всегда получить систему вида (*). Если число переменных системы ограничений и целевой функции в математической модели задачи равно 2, то её можно решить графически. Итак, надо максимизировать функцию  к удовлетворяющей системе ограничений. Обратимся к одному ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info