Методика економіко-математичного програмування

Заказать работу

Завдання 1

Для виготовлення виробів №1 і №2 є 100 кг металу. На виготовлення виробу №1 витрачається 2 кг металу, а на виріб №2 – 4 кг.

Скласти план виробництва, що забезпечує одержання найбільшого прибутку від продажу виробів, якщо відпускна вартість одного виробу №1 становить 3 грн. од., а виробу №2 – 2 грн. од., причому виробів №1 потрібно виготовити не більше 40 штук, а виробів №2 – 20 шт.

Сировина Вироби Кількість сировини
В1 В2
Метал 2 4 100
Вартість, грн. кг 3 2

Розв’язок

Складаємо математичну модель задачі. Позначимо через х1 кількість виробу №1, що виготовляє підприємство за деяким планом, а через х2 кількість виробу №2. Тоді прибуток, отриманий підприємством від реалізації цих виробів, складає

∫ = 3х1+2х2.

Витрати сировини на виготовлення такої кількості виробів складають відповідно:

CI =2х1+4х2,

Оскільки запаси сировини обмежені, то повинні виконуватись нерівності:

2х1+4х2≤100

Окрім того, виробів №1 потрібно виготовити не більше 40 штук, а виробів №2 – 20 шт., тобто повинні виконуватись ще нерівності: х1≤40, х2≤20.

Таким чином, приходимо до математичної моделі:

Знайти х1, х2такі, що функція ∫ = 3х1+2х2досягає максимуму при системі обмежень:

Розв'язуємо задачу лінійного програмування симплексним методом.

Для побудови першого опорного плану систему нерівностей приведемо до системи рівнянь шляхом введення додаткових змінних.

2x1 + 4x2 + 1x3 + 0x4 + 0x5 = 100

1x1 + 0x2 + 0x3 + 1x4 + 0x5 = 40

0x1 + 1x2 + 0x3 + 0x4 + 1x5 = 20

Матриця коефіцієнтів A = a(ij) цієї системи рівнянь має вигляд:

Базисні змінні це змінні, які входять лише в одне рівняння системи обмежень і притому з одиничним коефіцієнтом.

Вирішимо систему рівнянь відносно базисних змінних:

x3, x4, x5

Вважаючи, що вільні змінні рівні 0, отримаємо перший опорний план:

X1 = (0,0,100,40,20)

Оскільки завдання вирішується на максимум, то ведучий стовпець вибираємо по максимальному негативному кількістю та індексного рядку. Всі перетворення проводимо до тих пір, поки не вийдуть в індексному рядку позитивні елементи.

Складаємо симплекс-таблицю:

План Базис В x1 x2 x3 x4 x5 min
1 x3 100 2 4 1 0 0 50
x4 40

1

0 0 1 0

40

x5 20 0 1 0 0 1 0
Індексний рядок F(X1) 0

-3

-2 0 0 0 0

Оскільки, в індексному рядку знаходяться негативні коефіцієнти, поточний опорний план неоптимальний, тому будуємо новий план. У якості ведучого виберемо елемент у стовбці х1, оскільки значення коефіцієнта за модулем найбільше.

План Базис В x1 x2 x3 x4 x5 min
2 x3 20 0

4

1 -2 0

5

x1 40 1 0 0 1 0 0
x5 20 0 1 0 0 1 20
Індексний рядок F(X2) 120 0

-2

0 3 0 0

Даний план, також не оптимальний, тому будуємо знову нову симплексну таблицю. У якості ведучого виберемо елемент у стовбці х2.

План Базис В x1 x2 x3 x4 x5 min
3 x2 5 0 1 0,25 -0,5 0 5
x1 40 1 0 0 1 0 0
x5 15 0 0 -0,25 0,5 1 20
Індексний рядок F(X3) 130 0 0 0,5 2 0 0

Оскільки всі оцінки >0, то знайдено оптимальний план, що забезпечує максимальний прибуток: х1=40, х2=5. Прибуток, при випуску продукції за цим планом, становить 130 грн.


 

Завдання 2

Записати двоїсту задачу до поставленої задачі лінійного програмування. Розв’язати одну із задач симплексним методом і визначити оптимальний план іншої задачі.

Розв’язок

Розв’яжемо задачу лінійного програмування симплексним методом.

Визначимо мінімальне значення цільової функції F(X) = x1+3x2при наступних умовах-обмежень.

9x1+10x2≥45

5x1-x2≤42

-x1+13x2≤4

Для побудови першого опорного плану систему нерівностей приведемо до системи рівнянь шляхом введення додаткових змінних.

9x1 + 10x2-1x3 + 0x4 + 0x5 = 45

5x1-1x2 + 0x3 + 1x4 + 0x5 = 42

-1x1 + 13x2 + 0x3 + 0x4 + 1x5 = 4

Введемо штучні змінні x.


9x1 + 10x2-1x3 + 0x4 + 0x5 + 1x6 = 45

5x1-1x2 + 0x3 + 1x4 + 0x5 + 0x6 = 42

-1x1 + 13x2 + 0x3 + 0x4 + 1x5 + 0x6 = 4

Для постановки задачі на мінімум цільову функцію запишемо так:

F(X) = x1+3x2+Mx6 =>min

Вважаючи, що вільні змінні рівні 0, отримаємо перший опорний план:

X1 = (0,0,0,42,4,45).

План Базис В x1 x2 x3 x4 x5 х6
0 х6 45 9 10 -1 0 0 1
x4 42 5 -1 0 1 0 0
х5 4 -1 13 0 0 1 0
Індексний рядок F(X0) 0 0 0 0 0 0 0

Переходимо до основного алгоритму симплекс-методу.

План Базис В x1 x2 x3 x4 x5 x6 min
1 х6 45 9 10 -1 0 0 1 5,5
x4 42 5 -1 0 1 0 0 0
х5 4 -1

13

0 0 1 0 0,3077
Індексний рядок F(X1) 0 0

0

0 0 0 0 0

Оскільки, в індексному рядку знаходяться позитивні коефіцієнти, поточний опорний план неоптимальний, тому будуємо новий план. У якості ведучого виберемо елемент у стовбці х2, оскільки значення коефіцієнта за модулем найбільше.

План Базис В x1 x2 x3 x4 x5 x6 min
2 х6 41,92

9,77

0 -1 0 -0,7692 1

4,29

x4 42,31 4,92 0 0 1 0,0769 0 8,59
х2 0,3077 -0,0769 1 0 0 0,0769 0 0
Індексний рядок F(X2) 0

0

0 0 0 0 0 0

Даний план, також не оптимальний, тому будуємо знову нову симплексну таблицю. У якості ведучого виберемо елемент у стовбці х1.

План Базис В x1 x2 x3 x4 x5 x6 min
3 х1 4,29 1 0 -0,1024 0 -0,0787 0,1024

0

x4 21,18 0 0 0,5039 1 0,4646 -0,5039 45,59
х2 0,6378 0 1 -0,0079 0

0,0709

0,0079

9

Індексний рядок F(X3) 0

0

0 0 0

0

0 0

Даний план, також не оптимальний, тому будуємо знову нову симплексну таблицю. У якості ведучого виберемо елемент у стовбці х5.

План Базис В x1 x2 x3 x4 x5 x6
4 х1 5 1 1,11 -0,1111 0 0 0,1111
x4 17 0 -6,56 0,5556 1 0 -0,5556
х5 9 0 14,11 -0,1111 0 1 0,1111
Індексний рядок F(X4) 0 0 0 0 0 0 0

Оптимальний план можна записати так:

x1 = 5

x4 = 17

x5 = 9

F(X) = 1*5 = 5

Складемо двоїсту задачу до поставленої задачі лінійного програмування.

9y1+5y2-y3≤1

10y1-y2+13y3≤3

45y1+42y2+4y3 => max

y1 ≥ 0

y2 ≤ 0

y3 ≤ 0

Рішення двоїстої задачі дає оптимальну систему оцінок ресурсів. Використовуючи останню інтеграцію прямої задачі знайдемо, оптимальний план двоїстої задачі. Із теореми двоїстості слідує, що Y = C*A-1.

Сформуємо матрицю A із компонентів векторів, які входять в оптимальний базис.

Визначивши обернену матрицю А-1 через алгебраїчне доповнення, отримаємо:

Як видно із останнього плану симплексної таблиці, обернена матриця A-1 розміщена у стовбцях додаткових змінних.

Тоді Y = C*A-1 =

Запишемо оптимальний план двоїстої задачі:

y1 = 0.11

y2 = 0

y3 = 0

Z(Y) = 45*0.11+42*0+4*0 = 5

 


 

Завдання 3

Розв’язати транспортну задачу.

1 4 7 9 1 250
2 3 1 2 4 300
2 1 3 1 4 150
110 80 100 90 70

Розв’язок

Побудова математичної моделі. Нехай xij — кількість продукції, що перевозиться з і-го пункту виробництва до j-го споживача . Оскільки , то задачу треба закрити, тобто збалансувати (зрівняти) поставки й потреби:

У нашому випадку робиться це введенням фіктивного постачальника, оскільки . З уведенням фіктивного споживача транспортній таблиці додатково заявляється n робочих клітинок.

Ціни, додатковим клітинкам, щоб фіктивний стовбець був нейтральним щодо оптимального вибору планових перевезень, призначаються усі рівні нулю.

Занесемо вихідні дані у таблицю.


В1 В2 В3 В4 В5 В6 Запаси
А1 1 4 7 9 1 0 250
А2 2 3 1 2 4 0 300
А3 2 1 3 1 4 0 150
Потреби 110 80 100 90 70 250

Забезпечивши закритість розв'язуваної задачі, розпочинаємо будувати математичну модель даної задачі:

Економічний зміст записаних обмежень полягає в тому, що весь вантаж потрібно перевезти по пунктах повністю.

Аналогічні обмеження можна записати відносно замовників: вантаж, що може надходити до споживача від чотирьох баз, має повністю задовольняти його попит. Математично це записується так:

Загальні витрати, пов’язані з транспортуванням продукції, визначаються як сума добутків обсягів перевезеної продукції на вартості транспортування од. продукції до відповідного замовника і за умовою задачі мають бути мінімальними. Тому формально це можна записати так:


minZ=1x11+4x12+7x13+9x14+1x15+0x16+2x21+3x22+1x23+2x24+4x25+0x26+2x31+1x32+3x33+1x34+ +4x35+0x36.

Загалом математична модель сформульованої задачі має вигляд:

minZ=1x11+4x12+7x13+9x14+1x15+0x16+2x21+3x22+1x23+2x24+4x25+0x26+2x31+1x32+3x33+1x34+ +4x35+0x36.

за умов:

Запишемо умови задачі у вигляді транспортної таблиці та складемо її перший опорний план у цій таблиці методом «північно-західного кута».

Ai

Bj

ui

b1 = 110

b2 = 80

b3 = 100

b4=90

b5=70

b6=250

а1 = 250

1

110

4

80

7

[-]60

9

1

[+]

0

u1 = 0

а2 = 300

2 3

1

[+]40

2

90

4

[-]70

0

100

u2 = -6

а3 = 150

2 1 3 1 4

0

150

u3 = -6

vj

v1 =1

v2 =4

v3 =7

v4 =8

v5 =10

v6 =6


В результаті отримано перший опорний план, який є допустимим, оскільки всі вантажі з баз вивезені, потреба магазинів задоволена, а план відповідає системі обмежень транспортної задачі.

Підрахуємо число зайнятих клітин таблиці, їх 8, а має бути m+n-1=8. Отже, опорний план є не виродженим.

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0:

u1=0, u2=-6, u3=-6, v1=1, v2=4, v3=7 v4=8, v5=10, v6=6. Ці значення потенціалів першого опорного плану записуємо у транспортну таблицю.

Потім згідно з алгоритмом методу потенціалів перевіряємо виконання другої умови оптимальності ui + vj ≤ cij(для порожніх клітинок таблиці).

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi>cij

(1;5): 0 + 10 > 1

(1;6): 0 + 6 > 0

(3;4): -6 + 8 > 1

Тому від нього необхідно перейти до другого плану, змінивши співвідношення заповнених і порожніх клітинок таблиці. Вибираємо максимальну оцінку вільної клітини (А1B5): 1. Для цього в перспективну клітку (1;5) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

Тепер необхідно перемістити продукцію в межах побудованого циклу. З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (1;3) = 60. Додаємо 60 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 60 з хij, що стоять в мінусових клітинах. В результаті отримаємо новий опорний план.

Для цього у порожню клітинку А1B5 переносимо менше з чисел хij, які розміщені в клітинках зі знаком «–». Одночасно це саме число хij додаємо до відповідних чисел, що розміщені в клітинках зі знаком «+», та віднімаємо від чисел, що розміщені в клітинках, позначених знаком «–».

Усі інші заповнені клітинки першої таблиці, які не входили до циклу, переписуємо у другу таблицю без змін. Кількість заповнених клітинок у новій таблиці також має відповідати умові невиродженості плану, тобто дорівнювати (n + m – 1).

Отже, другий опорний план транспортної задачі матиме такий вигляд:

Ai

Bj

ui

b1 = 110

b2 = 80

b3 = 100

b4=90

b5=70

b6=250

а1 = 250

1

110

4

[-]80

7 9

1

[+]60

0

u1 = 0

а2 = 300

2 3

1

100

2

90

4

[-]10

0

[+]100

u2 = 3

а3 = 150

2

1

[+]

3 1 4

0

[-]150

u3 = 3

vj

v1 =1

v2 =4

v3 =-2

v4 =-1

v5 =1

v6 =-3

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi>cij

(2;1): 3 + 1 > 2

(2;2): 3 + 4 > 3

(3;1): 3 + 1 > 2

(3;2): 3 + 4 > 1

(3;4): 3 + -1 > 1

Вибираємо максимальну оцінку вільної клітини (А3B2): 1

Для цього в перспективну клітку (А3B2) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А2B5) = 10. Додаємо 10 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 10 з Хij, що стоять в мінусових клітинах. В результаті отримаємо новий опорний план.

Ai

Bj

ui

b1 = 110

b2 = 80

b3 = 100

b4=90

b5=70

b6=250

а1 = 250

1

110

4

[-]70

7 9

1

70

0

[+]

u1 = 0

а2 = 300

2 3

1

100

2

90

4

0

110

u2 = -3

а3 = 150

2

1

[+]10

3 1 4

0

[-]140

u3 = -3

vj

v1 =1

v2 =4

v3 =4

v4 =5

v5 =1

v6 =3

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi>cij

(1;6): 0 + 3 > 0

(3;4): -3 + 5 > 1

Вибираємо максимальну оцінку вільної клітини (А1B6): 0

Для цього в перспективну клітку (А1B6) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А1B2)=70. Додаємо 70 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 70 з Хij, що стоять в мінусових клітинах.

В результаті отримаємо новий опорний план.

Ai

Bj

ui

b1 = 110

b2 = 80

b3 = 100

b4=90

b5=70

b6=250

а1 = 250

1

110

4 7 9

1

70

0

70

u1 = 0

а2 = 300

2 3

1

100

2

[-]90

4

0

[+]110

u2 = 0

а3 = 150

2

1

80

3

1

[+]

4

0

[-]70

u3 = 0

vj

v1 =1

v2 =1

v3 =1

v4 =2

v5 =1

v6 =0

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi>cij

(3;4): 0 + 2 > 1

Вибираємо максимальну оцінку вільної клітини (А3B4): 1

Для цього в перспективну клітку (А3B4) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А3B6) =70. Додаємо 70 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 70 з Хij, що стоять в мінусових клітинах.

В результаті отримаємо новий опорний план.

Ai

Bj

ui

b1 = 110

b2 = 80

b3 = 100

b4=90

b5=70

b6=250

а1 = 250

1

110

4 7 9

1

70

0

70

u1 = 0

а2 = 300

2 3

1

100

2

20

4

0

180

u2 = 0

а3 = 150

2

1

80

3

1

70

4 0

u3 = -1

vj

v1 =1

v2 =2

v3 =1

v4 =2

v5 =1

v6 =0

Перевіримо оптимальність опорного плану, тобто повторюємо описані раніше дії.

Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

математичний модель симплекс екстремум

Перевірка останнього плану на оптимальність за допомогою методу потенціалів показує, що він оптимальний.

Розрахуємо значення цільової функції відповідно до другого опорного плану задачі:

F(x) = 1*110 + 1*70 + 0*70 + 1*100 + 2*20 + 0*180 + 1*80 + 1*70 = 470

За оптимальним планом перевезень загальна вартість перевезень всієї продукції є найменшою і становить 470 грн.

Завдання 4

Знайти графічним методом екстремуми функцій в області, визначеній нерівностями.

.

Розв’язок

Необхідно знайти мінімальне значення цільової функції F = 2X1+4X2 =>min, при системі обмежень:

x1+2x2≥2 (1)

2x1+2x2≤10 (2)

x1+x2=6 (3)

Побудуємо область допустимих рішень, тобто вирішимо графічно систему нерівностей. Для цього побудуємо кожну пряму і визначимо півплощини, задані нерівностями (півплощини позначені штрихом).

Межі області

Цільова функція F(x) =>min

Розглянемо цільову функцію завдання F = 2X1+4X2 =>min.

Побудуємо пряму, що відповідає значенню функції F = 0: F = 2X1+4X2 = 0. Будемо рухати цю пряму паралельним чином. Оскільки нас цікавить мінімальне рішення, тому рухався прямо до першого торкання позначеної області. На графіку ця пряма позначена пунктирною лінією.

Рівний масштаб


Область допустимих значень необмежена.

Другие материалы

  • Інформаційні системи в економіці
  • ... - рішення економічних задач прийняття управлінських рішень, що базується на результатах обробки даних. Рис. 2. Функціональні підсистеми інформаційної системи організації   2.3.5. Інформаційна архітектура організації У сукупності, інформаційні системи, а також мети, структура і функції ...

  • Підвищення ефективності роботи підприємства на основі застосування економіко-математичних методів (на прикладі ВАТ "Дніпрополімермаш")
  • ... мету і задачі даної роботи. Метою даної роботи є підвищення ефективності роботи підприємства ВАТ «Дніпрополімермаш» шляхом управління собівартістю продукції. Відповідно, для досягнення поставленої мети необхідно вирішити наступні задачі: 1.   Проаналізувати фінансово-економічний стан ...

  • Економічні задачі лінійного програмування і методи їх вирішення
  • ... ів до дослідження різних економічних проблем. У 1949 р. американським математиком Дж. Данцигом (GB Dantzig) був опублікований симплекс-метод - основний метод рішення задач лінійного програмування. Термін «лінійне програмування» вперше з'явився в 1951 р. в роботах Дж. Данцига і Т. Купманса. При ...

  • Моделювання оптимальної стратегії заміни обладнання за допомогою динамічного програмування
  • ... оптимальну стратегію керування U*, що включає оптимальні керування на окремих кроках: U*= (u1*, u2*,…, un*). Отже, зі знаходження рішення завдання динамічного програмування видно, що цей процес є досить громіздким. Тому більше складні завдання вирішують за допомогою ЕОМ. Динамічне завдання по зам ...

  • Моделювання оптимального розподілу інвестицій за допомогою динамічного програмування
  • ... наступний стан системи . Для зміненого стану знайти оптимальне управління , підставити у формулу (2.11) і так далі. Для і-гo стану , знайти  і  і т.д. [1]. 3. Оптимальний розподіл інвестицій, як задача динамічного програмування Інвестор виділяє кошти в розмірі  умовних одиниць, котрі ...

  • Економіко-математичне обґрунтування підвищення ефективності виробництва МКВП "Дніпроводоканалу"
  • ... ;       форма № 2 "Звіт про фінансові результати" за 2007 – 2008 роки (додаток Г). 3 Підвищення ефективності виробництва МКВП "Дніпроводоканал" на підставі методів Економіко-математичного моделювання У грудні 2008 року Дніпропетровський ...

  • Підвищення економічних показників державного підприємства "Дніпропетровські магістральні електричні мережі"
  • ... ічну ефективність впровадження автоматизованої системи для підприємства "Титан". Інформаційна система, що розроблена для підвищення ефективності підвищення економічних показників роботи підприємства "Титан", а саме модель максимізації прибутку дала результати, які говорять про ...

  • Підвищення економічних показників з урахуванням сезонних коливань в умовах шахти "Добропільська"
  • ... даного дипломного проекту, а саме – підвищення ефективності економічних показників роботи шахти "Добропільська". Перший варіант розрахунку максимального прибутку - модель максимізації прибутку за допомогою метода прогнозування з урахуванням сезонних коливань. При прогнозуванні на основ ...

  • Економіко–математичне моделювання
  • ... чного розвитку, є у зв'язку з цим привабливим інструментарієм на шляху подальшого просування апарату економіко-математичного моделювання. Така універсальна модель є оптимальною на всьому класі даних економічних задач, у кожному конкретному випадку настроюється на оптимальну модель з банку. На цьому ...

  • Економічне моделювання в економічному аналізі
  • ... елементів і форм їх взаємодії на ринку мікроекономічне моделювання становить основну частину економіко-математичної теорії. Останніми роками найсуттєвіші теоретичні результати в мікроекономічному моделюванні отримано в процесі дослідження стратегічної поведінки фірм в умовах олігополії. Теоретичні ...

  • Економічний аналіз
  • ... яка забезпечує максимальне наближення фактичних результатів до установлених цілей (стандартів). При цьому всі дії базуються на рішеннях, прийнятих на основі економічного аналізу. Економічний аналіз відіграє важливу роль у розробці, реалізації і контролі за реалізацією управлінських рішень. Для ...

  • Національна і регіональна економіка України
  • ... в плані ГОЭЛРО й у п'ятилітніх планах. Найбільше сильною стороною вітчизняної школи регіональної економіки стали дослідження, що забезпечують планування розміщення продуктивних сил і регіонального розвитку. Вони націлювалися на досягнення радикальних зсувів у розміщенні виробничого потенціалу кра ...

  • Вимоги до написання дисертації. Математичне моделювання в економіці
  • ... , який вивчається, та суб’єктом, який пізнає (системним аналітиком). Головним гальмом для практичного застосування математичного моделювання в економіці є проблема наповнення розроблених моделей конкретною та якісною інформацією. Точність і повнота первинної інформації, реальні можливості її збору ...

  • Математичні методи та моделі в управлінні аграрним виробництвом
  • ... займає лінійне програмування. Це пояснюється широким колом задач, що можуть бути зведені до лінійних моделей, а також розвинутим математичним і програмним забезпеченням методу лінійного програмування. Задача лінійного програмування у стандартній формі має вигляд:   Z = C1x1 + C2x2 + … + Cnxn ...

  • Економіко-математичне моделювання діяльності кредитних спілок
  • ... ійних технологій та систем НАН України та Міністерства освіти і науки України, Київ, 2002. Дисертацію присвячено проблемам економіко-математичного моделювання діяльності кредитних спілок. В дисертації розроблені теоретико-методологічні основи дослідження мікроекономічного об'єкта в умовах ринкової ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info