ЛИНЕЙНЫЙ ПЛОСКИЙ ТРЕУГОЛЬНЫЙ ЭЛЕМЕНТ

Узнать стоимость написания работы

Лекция

ЛИНЕЙНЫЙ ПЛОСКИЙ ТРЕУГОЛЬНЫЙ ЭЛЕМЕНТ

Схема элемента показана на рис.3.1. Элемент имеет три узла, перенумерованные против часовой стрелки. Каждый узел имеет две степени свободы, т. е. может иметь перемещения вдоль осей и . Предполагается, что смещения любой точки внутри элемента являются линейными функциями координат этой точки:

(3.16)

где константы.

Рис. 3.1

Из (3.16), учитывая (1.14), можно получить выражения для деформаций.

(3.17)

Из (3.17) следует, что деформации здесь не зависят от координат точки, т. е. являются постоянными в пределах элемента. В связи с этим такой линейный трех узловой элемент получил название «элемента постоянных деформаций».

Заметим, что перемещения самих узлов также должны описываться уравнениями (3.16), при этом вместо и должны быть подставлены соответствующие координаты узлов . Получим систему шести уравнений, из которой определим шесть искомых коэффициентов :

Решив эту систему уравнений, получим выражения для в зависимости от перемещений узлов и их координат.

Окончательно для перемещений точек в пределах элемента получим:

(3.18)

где — функции формы (линейные по ):

(3.19)

(3.20)

где — площадь треугольного элемента (определитель матрицы).

Используя дифференцирование (1.14), (3.18) и (3.19), получим:

(3.21)

где

Из (3.21) следует, что деформации постоянны в точках внутри элемента, о чем уже говорилось выше. Следовательно, и напряжения в точках внутри элемента также постоянны. Учитывая эти свойства данного трех узлового элемента, следует ограничить его применение областями, где отсутствует большой градиент напряжений, т. е. вдали от концентраторов напряжений. Этот элемент можно использовать для выполнения предварительных оценочных расчетов.

На основании (3.15) получим выражение для матрицы жесткости треугольного элемента с прямолинейными границами (т. е. с тремя узлами):

(3.22)

где толщина элемента. Заметим, что в этом уравнении — симметричная матрица размером .

Как видно из уравнений (3.19), для плоского треугольного элемента в глобальной системе координат функции формы представляют собой достаточно сложные вычисления. Эти выражения существенно упрощаются, если ввести локальную систему коор­динат показано на рис.3.2. Тогда функции формы могут быть записаны сущест­венно проще:

(3.23)

Заметим, что:

(3.24)

т.е. условие (3.4 в) выполняется.

Рис.3.2 Локальная система Рис.3.3 График функций

координат КЭ. формы

 

Отметим также, что функции формы (3.23) вдоль каждой из сторон треугольного элемента ведут себя точно так же, как и в одномерном случае (п. 2.1.1): в узле ; во всех остальных узлах и линейно изменяется вдоль стороны элемента. График изменения функции формы приведен на рис. 3.3. Функции формы и ведут себя аналогично.

 

 

 

КВАДРАТИЧНЫЙ ТРЕУГОЛЬНЫЙ ЭЛЕМЕНТ

Перейдем к рассмотрению квадратичного треугольного элемента, схема которого показана на рисунке. В отличие от линейного треугольного элемента, элемент данного типа имеет 6 узлов: 3 узла расположены по углам элемента, 3 узла — по середине сторон. Каждый узел, как и в линейном треугольном элементе, имеет 2 степени свободы. В этом случае смещения () точек элемента должны выражаться квадратичными функциями их координат

(3.32)

где константы.

Из (3.32) легко вычислить деформации путем дифференцирования:

(3.33)

Легко видеть, что в пределах данного элемента деформации являются линейными функциями координат. Таким образом, шести узловой треугольный элемент позволяет бо­лее точно описывать поле напряжений и деформаций, чем рассмотренный в предыдущем пункте трех узловой треугольный элемент. В локальной координатной системе которая полно­стью совпадает с введенной ранее для линейного треугольного элемента, шесть функций формы для этого элемента можно записать следующим образом:

(3.34)

Каждая из шести функций формы в (3.34) является квадратичной функцией локальных координат, но так же, как и в случае линейного трех узлового элемента, в узле и в остальных узлах (рис.3.5).

Рис.3.5 График функций

формы

Используя введенные в (3.34) функции формы, смещения в любой точке элемента можно записать смещения узлов следующим образом:

Матрицу жесткости для элемента по-прежнему можно записать в форме

, но здесь будет иметь квадратичную зависимость от координат .

 

ЛИНЕЙНЫЙ ЧЕТЫРЕХУГОЛЬНЫЙ ЭЛЕМЕНТ

Линейный четырехугольный элемент, схематично изображенный на рис. 3.6, представляет собой в системе локальных координат прямоугольник с четырьмя узлами в его вершинах. В системе локальных координат () функции формы записываются следующим образом:

Заметим, что, как и для ранее рассмотренных элементов:

Рис.3.6 Локальная система координат КЭ.

Поле смещений задается следующими уравнениями:

(3.37)

Как следует из (3.37), и являются билинейными функциями в пределах всего элемента.

 

КВАДРАТИЧНЫЙ ЧЕТЫРЕХУГОЛЬНЫЙ ЭЛЕМЕНТ

Квадратичный четырехугольный элемент (рис. 3.7) представляет собой прямоугольник с 8 узлами: 4 узла по углам и 4 узла по серединам сторон.

Рис.3.7 Локальная система координат КЭ.

В системе локальных координат 8 функций формы записываются следующим образом:

. . .

Заметим, что снова, как и для ранее рассмотренных элементов

Поле смещений определяется уравнениями:

которые представляют собой квадратичные функции. Деформации и напряжения в точках в пределах четырехугольного 8-узлового элемента являются линейными функциями коор­динат, что позволяет более точно рассчитать напряжения и деформации, чем с помощью 4-узловых элементов.

В заключение отметим, что применение квадратичных треугольных или четырех­угольных элементов с шестью или восемью узлами соответственно позволяют моделиро­вать тела с криволинейной границей, что повышает точность результатов моделирования.

3.6. ПРЕОБРАЗОВАНИЕ НАГРУЗКИ

Помимо сил, которые в расчете можно трактовать как сосредоточенные, на элементы конструкции действуют также поверхностные силы (например, внутреннее давление) и объемные силы (например, вес). Как поверхностные, так н объемные силы являются при­мерами распределенной нагрузки, которая в соответствии с принципами метода конечных элементов не может быть непосредственно приложена к элементу, а должна быть транс­формирована к узлам. Приведение распределенной нагрузки к узлам основано на сравнении энергии упругих деформаций. С использованием этого принципа в предыдущих лекциях были сформулированы правила трансформации распределенных нагрузок для одномерных стержневых и балочных элементов.

Рассмотрим правило трансформации поверхностной нагрузки, равномерно распределенной вдоль стороны четырехугольного элемента. Предположим, что

Рис. 3.8 Трансформации поверхностной нагрузки

линейно распределенная поперечная нагрузка q приложена к стороне АВ линейного четырехугольного элемента (рис. 3.8а).

Введя локальную координату S вдоль стороны АВ, запишем выражение для работы нагрузки q :

где — толщина элемента, длина его стороны, вдоль которой приложена нагрузка величина составляющей перемещения, нормальной к стороне АВ приложения нагрузки.

Для линейного четырехугольного элемента с учетом (2.5) имеем:

Линейная поперечная нагрузка также может быть описана аналогичной формулой:

Таким образом, для работы получим:

откуда находим вектор эквивалентной нагрузки в узлах (рис 3.8б):

В частном случае, при , получим:

Для квадратичных элементов (треугольных или четырехугольных) с промежуточным узлом посредине стороны распределенная нагрузка перераспре-деляется не по двум узлам, как выше описанном случае, а по трем узлам.

Аналогичным же образом приводится к узлам и распределенная нагрузка, касательная к границе, и объемная нагрузка.

Напряжения в точках элемента вычисляются по следующей формуле:

Здесь — матрица дифференцирования перемещений; — вектор смещений узлов, которые должны быть известны для каждого из видов примененных элементов по­сле решения глобальной системы уравнений.

Источник: портал www.KazEdu.kz

Другие материалы

  • СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ В ЛИНЕЙНОЙ ЗАДАЧЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ
  • ... работа, затрачиваемая на выполнение каждого преобразования. глава 3. Использование сингулярного разложения в методе наименьших квадратов При использовании метода сингулярного разложения (SVD – Singular Value Decomposition) мы проводим разложение для матрицы плана. При этом основное уравнение y=Xb ...

  • Производство линейных конструкций (свай)
  • ... эксплуатации конструкции, особенности технологии изготовления. Правильный выбор материалов позволяет экономить цемент и способствует получению качественного бетона с требуемыми характеристиками. 2.1  Цемент Цемент самый дорогостоящий материал в бетоне и энергоемкий при производстве. ...

  • Линейные корабли
  • ... [1]. Это решение фактически означало очередную корректуру программы кораблестроения второй пятилетки (1933-1937 гг.), дополняя ее ранее не предусмотренными линейными кораблями. Однако реализация новых планов усиле-ния флота встретила серьезные затруднения, часть которых определялась огромным объемом ...

  • Геометрия молекул. Теория ЛЭП. Элементы стереохимии
  • ... , оно определяется валентным состоянием атома. Обратимся к примерам, иллюстрирующим прогнозы теории ЛЭП. Рассмотрим соединения разных групп Периодической Системы. 1)У молекул соединений элементов 2-й группы реализуется самая простая структура, порождаемая валентной конфигурацией центрального ...

  • Системы линейных и дифференциальных уравнений
  • ... заданную фигуру. Объем тела, полученного вращением плоской фигуры около оси ОХ найдем по формуле: В нашем случае получаем:  куб.ед.   Ответ:  куб.ед. 7.  А) Найти общее решение дифференциального уравнения. Б) Найти решение задачи Коши В) Найти общее решение ...

  • Система математических расчетов MATLAB
  • ... линейных алгебраических уравнений с более чем одной неизвестной; MATLAB решает такие уравнения без вычисле-ния обратной матрицы. Хотя это и не является стандартным математическим обозначением, система MATLAB использует терминологию, связанную с обычным делением в одномерном случае, для описания ...

  • Методика изучения многогранников в школьном курсе стереометрии
  • ... , были подобраны опорные задачи, которые можно использовать на уроке при изучении данной темы. Таким образом, в данной работе были рассмотрены основные, общие моменты изучения многогранников в школьном курсе стереометрии. В следствие чего дальнейшие исследования могут проходить в направлении более ...

  • Остеология и артрология
  • ... часть крыловидного венозного сплетения и зачелюстная вена. Через крыловидно-верхнечелюстную щель яма сообщается с крылонебной ямкой.   Общая артрология и синдесмология В начале развития скелета зачатки костей связаны между собой мезенхимой непрерывно. Из нее возникает соединительная ткань ...

  • Основы взаимозаменяемости
  • ... зубьев, наружному диаметру и по внутреннему диаметру. Для шлицевых эвольвентных соединений создана принципиально новая система в рамках международных норм взаимозаменяемости. Для нормирования точности изготовления ширины впадины втулки и толщины зуба вала установлены два вида допусков: собственно ...

  • Здания и сооружения
  • ... большая прочность в сухом состоянии и просадочность (даже провальность) в замоченном состоянии. Поэтому при необходимости возведения на них зданий и сооружений необходимо обеспечить защиту оснований от атмосферной и производственной влаги. Глинистые и песчаные грунты в зависимости от наличия в них ...

  • Металлические конструкции
  • ... , когда замена его другими видами материалов (в первую очередь железобетоном) нерациональна. Транспортабельность. В связи с изготовлением металлических конструкций, как правило, на заводах с последующей перевозкой на место строительства в проекте должна быть предусмотрена возможность перевозки их ...

  • Методика изучения объемов многогранников в курсе стереометрии
  • ... которых являются слишком громоздкими.   Выводы по § 1 1.      Основные цели изучения темы «Объемы многогранников» в курсе стереометрии – развитие пространственных представлений учащихся, освоение способов вычисления практически важных величин и дальнейшее развитие ...

  • Технология строительства убежищ, возводимых в особый период
  • ... , следует упомянуть железобетонные элементы войскового фортификационного строительства (рисунок 7). Рисунок 7. Убежища, возводимые из элементов специального строительства По несущей способности и другим положительным качествам они близки к рассмотренным выше элементов коллекторов. Для ...

  • Основы проектирования и конструирования
  • ... структуры [14]. Принципы построения функциональных структур технических объектов рассматриваются в последующих главах курса "Основы проектирования им конструирования" не включенных в настоящее пособие. Для систем управления существуют характеристики, которые можно использовать в ...

  • Применение технического анализа на фондовом рынке
  • ... состоянию которого судят об успехах или неудачах развития отечественного фондового рынка 1.4. Применимость технического анализа в России.Учитывая вышеизложенные характеристики российского фондового рынка, применению технического анализа нужно уделять особое внимание. Хотя бы для минимизации рыночных ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info