Поиск по сайту


Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:


Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info

Информационные параметры сигналов

Узнать стоимость написания работы

В.М. Гончаров

Изучение развития колебательных процессов в испытуемых изделиях, путем проведения исследований одиночных импульсных сигналов излучаемых данным изделием, требует знания их параметров. Эти параметры должны позволять воссоздавать наиболее полную картину сигнала в частотной и временной области. Основными такими параметрами сигнала являются: энергия сигнала, пиковая мощность, длительность сигнала, несущая частота, количество посылок в сигнале.

Необходимость их измерения заключается в следующем:

Энергия импульса позволяет определить критерии стойкости измерительной аппаратуры и выяснить энергетические возможности разрабатываемых источников.

Пиковая мощность сигнала позволяет определить процессы развития колебаний и характеризует его способности.

Измерение длительности радиоимпульса позволяет выяснить механизм происходящих процессов.

Количество импульсов позволяет уточнить динамику процессов в источнике, сразу определяя параметры радиотехнических процессов, одновременно характеризуя поведение механических процессов.

Комплексный анализ этих данных позволяет практически выяснить сущность протекающих в одноразовых источниках процессов, уточнить параметры физической модели, и своевременно внести коррективы в разрабатываемые источники.

Для измерения параметров импульсного электромагнитного излучения, группой разработчиков института Радиофизики и электроники НАН Украины, разработан базовый блок спектрометра. Он позволяет измерять энергию одиночного электромагнитного импульса W, максимальное значение пиковой мощности сигнала Р, длительность входного сигнала T, и количество импульсов в сигнале N.

Принцип работы спектрометра ИПИЭИ-1

Структурная схема прибора показана на рис.1. Она состоит из следующих узлов. Входного фильтра, детектора, каналов измерения - энергии импульса, пиковой мощности и длительности импульса. Для управления узлами спектрометра, обработки результатов измерений и вывода данных на индикатор используется контролер. Прибор работает следующим образом. Сигнал с антенны поступает на входной фильтр, и далее на детектор. С выхода детектора огибающая исследуемого сигнала поступает на входной усилитель, обеспечивающий необходимое усиление в полосе частот согласованных с параметрами обрабатываемых сигналов. Выходной сигнал усилителя поступает на три канала обработки -канал измерения энергии импульса, канал измерения пиковой мощности и канал измерения длительности. Принцип работы этих каналов измерения энергии и пиковой мощности основан на преобразовании измеряемого параметра в квазипостоянное напряжение. Для этого в канале измерения энергии входной сигнал интегрируется, а затем после усиления и дальнейшей обработки поступает на предварительный расширитель длительности импульса. В канале измерения пиковой мощности входной сигнал сначала проходит предварительную обработку, а затем также поступает на расширитель входного сигнала. Измерение длительности импульса производится путем преобразования время - амплитуда. Для этого сигнал выхода усилителя поступает на быстродействующий амплитудный дискриминатор на формирующий на выходе прямоугольный импульс, длительность которого определяется параметрами входного сигнала. Далее этот импульс поступает на преобразователь время-амплитуда. На выходе преобразователя формируется пилообразный выходной сигнал, передний фронт которого равен длительности входного сигнала, а амплитуда напряжения определяется длительностью входного сигнала. В случае если входной сигнал состоит из нескольких входных импульсов, на выходе преобразователя амплитуда выходного сигнала пропорциональна сумме длительностей импульсов. С выходов каналов измерения энергии, пиковой мощности и длительности сигнала напряжения пропорциональные преобразованным параметрам поступают на входы соответствующих амплитудных детекторов. Это необходимо для уменьшения ошибки в промежутке времени между окончанием преобразований и в период считывания и обработки полученных результатов, а также для согласования с аналого-цифровым преобразователем (АЦП). С выходов амплитудных детекторов напряжения пропорциональные уровням соответствующих параметров сигналов поступают на плату контролера в и далее на АЦП. По окончании выходного сигнала управляющий процессор выдает команду АЦП на считывание, поступающих на его вход, сигналов. АЦП последовательно считывает поступившие уровни напряжений, а затем процессор после считывания соответствующих им параметров из таблиц калибровки, зашитых в соответствующие устройства памяти, передает их для индикации на дисплей. Для подсчета количества импульсов использован выход дискриминатора, сигнал с которого поступает на, расположенный на плате контролера, быстродействующий счетчик.

Алгоритм работы прибора предусматривает работу прибора в диалоговом режиме с оператором и проверку работоспособности аккумуляторных батарей. Для уменьшения температурных погрешностей прибор калибруется в различных температурных диапазонах, а данные результатов калибровки зашиваются в соответствующую область памяти. Устранение погрешности связанной с температурным прогревом элементов при включении прибора достигается за счет введения 2-х минутного интервала после чего встроенный процессор осуществляет внутреннее тестирование напряжений на аккумуляторах и начальных напряжений амплитудного детектора и только при их нормальных значениях разрешается дальнейшая работа с прибором. Наличие процессоров позволяет организовать передачу данных результатов измерений к удаленной вычислительной машине.

Общий вид спектрометра ИПИЭИ-1 изображен на рис.2

Рис1. Блок схема спектрометра ИПИЭИ-1.

Технические характеристики спектрометра ИПИЭИ-1

1. Диапазон рабочей частоты - 9,38 ГГц,  = 3 см.

2. Полоса пропускания в рабочем диапазоне  = 450 МГц.

3. Эффективная площадь антенны S = 1,38 см .

4. Диапазон измеряемой энергии излучения Е дж, от 0,02 T 10 до 3,7T10.

5 Диапазон измеряемой мощности излучения P Вт, от 0,05 T 10 до 5,0 T 10.

6. Диапазон измеряемой длительности импульса излучения сек, от 0,30 T10 до 550 T10.

7. Количество измеряемых импульсов в одном измерении не более 100.

8. Измерительный приемник выполнен в виде моноблочной конструкции с автономным питанием амплитудой  12 В.

9. Емкость источников питания не менее 1,2 А/ч.

10. Измерительный приемник энергии СВЧ - излучения имеет выходные, защищённые от СВЧ - наводок, разъемы для подзарядки аккумуляторных батарей, дисплей прибора также защищён от наводок.

11. Габариты блока не более 300х600х400мм.

12. Масса измерительного приемника не более 10кг.

Прибор прошел испытания в полевыхусловиях.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://www.laboratory.ru

Другие материалы

  • Адаптивное параметрическое оценивание квадратно-корневыми информационными алгоритмами
  • ... УЛЬЯНОВСК 1998 г. Отзыв научного руководителя на дипломную работу М.Ю. Кудрявцева Тема работы ”Адаптивное параметрическое оценивание квадратно-корневым информационным алгоритмом” продиктована необходимостью проведения широкого спектра исследований по сравнительным оценкам различных ...

  • Билеты на государственный аттестационный экзамен по специальности Информационные Системы
  • ... помещаются в специальный контейнер - модуль данных (Date Module) ), а элементы управления размещаются на формах (строительных площадках окон, входящих в состав пользовательского интерфейса) разрабатываемых приложений. 1 Кибернетический подход к информационной системе ...

  • Разработка генератора сигналов на цифровых микросхемах
  • ... проводить отбор отдельных компонентов ИС по допуска, как это имело место в схемах дискретных электорадиоэлементах в ЭВМ третьего поколения. Разработка генератора на цифровых микросхемах. Для проверки и настройки цифровых интегральных микросхемах транзисторно-транзисторной логики (ТТЛ) требуются ...

  • Классификация триггерных устройств. Требования и параметры, характеризующие триггерные устройства
  • ... записью информации, имеют различные выходные диаграммы при идентичной входной. Требования и параметры, характеризующие триггерные устройства Триггер, как и любое другое электронное устройство, характеризуется рядом параметров и требований, предъявляемых к нему. Всю совокупность этих ...

  • Основы построения систем. Способы передачи и анализ телемеханических сигналов
  • ... информационные характеристики источника сообщений и характеристики используемого канала связи. Физические характеристики канала и сигнала. Обычно телемеханические сигналы передаются посылками электрического тока по проводным линиям связи, но иногда используется и радиоканал. В обоих случаях перенос ...

  • Открытые сети с многорежимными стратегиями обслуживания и информационными сигналами
  • ... как эти потоки являются сложными благодаря воздействию отрицательных заявок и из-за нелинейности уравнений трафика. 2. ОТКРЫТЫЕ СЕТИ С МНОГОРЕЖИМНЫМИ СТРАТЕГИЯМИ ОБСЛУЖИВАНИЯ И ИНФОРМАЦИОННЫМИ СИГНАЛАМИ ДВУХ ТИПОВ В 1 исследовалось стационарное распределение марковского процесса, описывающего ...

  • Сигналы и их характеристика
  • ... знать: -           физические свойства сообщений, сигналов, помех и каналов связи, их основные виды и информационные характеристики (ОК-1, ОК-9, ПК-1); -           принципы и основные закономерности ...

  • Проект информационно-вычислительной сети Мелитопольского межрайонного онкологического диспансера
  • ... . В целях комплексной автоматизации документооборота, а также повышения качества диагностики и лечения онкологических больных в Мелитопольском межрайонном онкологическом диспансере, разработан проект информационно-диагностической системы, предназначенной для оперативного ввода, анализа и хранения ...

  • Проектирование устройства преобразования сигналов
  • ... устанавливает его допустимое значение; С2 - преобразования, находится между ООД и ООЛ и представляет собой 25- или 26-проводную шину в которой ООД использует розеточную, а ООЛ - вилочную часть разъема, служит для обмена данными и синхронизации ООД и ООЛ; С3 - защитный, между ООЛ и устройством защиты ...

  • Информационный процесс. Обработка информации
  • ... рецепцию всегда можно рассматривать как процесс классификации. Формализованная модель обработки информации Обратимся теперь к вопросу о том, в чем сходство и различие процессов обработки информации, связанных с различными составляющими информационного процесса, используя при этом формализованную ...

  • Информационно-измерительная система
  • ... выбрать и рассчитать параметры преобразования аналогового сообщения в цифровой первичный сигнал (двоичный код) для передачи в информационном канале системы измерения и сбора информации. Сообщение представлено в виде реализации случайного стационарного процесса, заданного плотностью распределения ...

  • Комплекс измерения параметров обратного канала
  • ... диапазон измеряемого сигнала: 5–865 МГц. -           При работе в составе комплекса измерений параметров обратного канала ЦИУ‑01: -           измеряет пилот-сигналы от генераторов ГПС‑ ...

  • Методы и средства обработки аналоговых сигналов
  • ... меньших частотах опроса, чем при ступенчатой интерполяции. Проверка соответствия выбранного метода интерполяции и ЭВМ откладывается на этап нагрузочного расчета. Расчет параметров квантования сигналов осуществляется по следующим формулам: 1. Основная цель данного этапа - расчет частот опроса ...

  • Примеры измерительных информационных систем
  • ... этого является схожесть структур, обязательное использование ЭВМ и соответствующего ПМО. Заключение В работе рассмотрены примеры измерительных информационных систем для исследования объектов различной физической природы. Литература 1. Автоматизация физических исследований и ...

Rambler's Top100 Рейтинг@Mail.ru
Рефераты и материалы размещенные на сайте принадлежат их законным правообладателям. При использовании материалов сайта, ссылка на KazReferatInfo обязательна!
Казахстанские рефераты
Copyright © 2007-2016г. KazReferatInfo