Гидравлический расчёт

Заказать работу

 

Курсовая работа

по дисциплине источники и системы теплоснабжения

Задание на выполнение курсовой работы:

 

Расчитать систему теплоснабжения для выбранного генерального плана предприятия:

·     Осуществить раcчет теплопотерь через ограждающие конструкции

·     Определить удельный расход теплоты на отопление здания

·     Выбрать тип котла и место расположения котельной.

·     Выбрать тип отопительных приборов

·     Определить требуемую площадь поверхности отопительных приборов

·     Нанести на плане магистральные трубопроводы системы отопления

·     Составить аксонометрическую схему отопления с нанесением отопительных приборов, запорно-регулировочной арматуры, расширительного бака

·     Провести гидравлический расчет системы отопления

·     Произвести расчет гидроэлеватора и тепловые потери для случая подключения помещения к существующей тепловой сети.

Тепловая мощность системы отопления определяется из уравнения теплового баланса

Фсо = Σ Ф пот -Σ Ф пост

 

 

1.1. Определение величины теплопотерь через ограждающие конструкции.

Исходными данными для расчета теплопотерь отдельными помещениями и зданием в целом являются

·     планы этажей и характерные разрезы по зданию со всеми строительными размерами.

·     Назначение помещений

·     Ориентация здания по сторонам света

·     Место постройки здания

Отметим, что поток теплоты(Вт) теряемой помещением, складывается из основных потерь теплоты через все его наружные ограждения Ф0 и добавочных теплопотерь Фдоб

 Ф=ΣФ0+ΣФдоб

При этом потери теплоты определяем суммируя потери теплоты через отдельные ограждающие конструкции с округлением до 100 Вт.

Ф =F/R0(tв - tн)(1+Σβ)n=kF(tв - tн)(1-Σβ)n

Где F- расчетная площадь ограждения, k - коэффициент теплопередачи данной ограждающей конструкции; R0 - сопротивление теплопередачи данной ограждающей конструкции; tв - tн - температуры внутреннего и наружнего воздуха. (1-Σβ) - добавочные теплопотери; n- коэффициент учитывающий положение ограждающего покрытия по отношению к наружнему воздуху;

Определим основные теплопотери проектируемого здания по соотношению

Ф =F/R0(tв - tн)n (1)

НАРУЖНИЕ СТЕНЫ

Наружные стены выполнены толщиной в два кирпича, оштукатуренные изнутри с использованием цементно-песчаной штукатурки( в случае известково-песчаной штукатурки параметры должны быть изменены).

Исходные данные для кирпичных стен λк = 0,81 Вт/(м*0 С); δк= 0,51 м

Исходные данные для цементно-песчаной штукатурки стен λшт = 0,93 Вт/(м*0 С); δшт= 0,015 м.(для известково-песчаной штукатурки возможно применение λшт = 0,81 Вт/(м*0 С)

Геометрические размеры помещения:

первый этаж а =22,4м; b= 12,46м; h= 4,4м

 Помещение имеет 11 оконных блоков с двойным остеклением имеющие общую площадь остекления Fcт= 11*1,2*1,8=23,76кв.м

Площадь поверхности наружных стен

26,3*3,6

F= 2ab-Fс =2*22,4*12,46-23,76=558,208-23,76=534,4кв.м

Сопротивление теплопередаче наружных стен получим по формуле 1 учитывая что Rв=0,115 (м2 0С/Вт) и Rн=0,043 (м2 0С/Вт) площадь пола S=279,104кв.м

Rо= Rв+Rн+Σ Ri где Ri = δкк+ δштшт =0,51/0,81+0,015/0,81

Rо= 0,115+0,043 +0,015/0,81+0,51/0,81=0,806 м2 0С/Вт

Сопротивление теплопередаче двойных окон Rо=0,345 м2 0С/Вт

Следовательно теплопотери через наружные стены определяются

Ф=F/R0(tв-tн)n=(1/0,345)*534,4(16+18)+(1/0,345)23,76(16+18)=

52666+2341,5=55007,5Вт

Одна стена обращена на север, вторая на восток , третья стена на запад и последняя на юг поэтому дополнительные потери теплоты через эти стены Фдоб ст составляют: для первой 10%, второй 10%, третьей 5% и четвертая 0% от основных теплопотерь, которые необходимо добавить к последним.

Фдоб ст =25467*0,25=6367Вт. Таким образом, с учетом дополнительных теплопотерь через наружние стены получим

Фдоб  =25467+6367=31833Вт

ПЕРЕКРЫТИЯ

Перекрытие имеет площадь S=273.5 кв.м. и состоит из железобетонных плит толщиной δпл=0,035м, для которых по таблице λк = 2,04 Вт/(м*0 С); Железобетонные плиты покрыты теплоизоляцией выполненной из минеральной ваты толщиной δваты=0,14м, слоя гравия керамзитового δкер=0,1м, и двух слоев рубероида толщиной δруб=0,003м, для которых выбираем по таблице значения теплопроводности и значения сопротивления тепловосприятию для внутренней и внешней поверхностей:

λваты = 0,06 Вт/(м*0 С), λруб = 0,17 Вт/(м*0 С), λкер = 0,23 Вт/(м*0 С)

Rв= 0,132 (м2 0С)/Вт, Rн= 0,043 (м2 0С)/Вт,

Исходя из этих данных получим для сопротивления теплопередаче перекрытия

Rо пер= 0,132+0,043+0,035/2,04 + 0,14/0,06 + 0,1/0,23 + 0,003/0,17=

0,132+0,043+0,017+2,33+0,435+0,018=2,975 (м2 0С)/Вт,

Теплопотери через перекрытия находим по соотношению

Ф =F/R0(tв - tн)n

Принимаем поправочный коэффициент n =0,9 как для чердачных перекрытий с кровлей из рулонных материалов

Фпер=(1/2,975)*273,5*(16+18)*0,9=282.9 вт

ПОЛЫ

Полы выполнены из керамзитобетона (ρ=1800кг/м3) толщиной δкер=0,1м, теплопроводность которого находим по справочным данным таблицы 7 [1] λкер = 0,92 Вт/(м*0 С). Ширина пола равна b= 10.4м до осевой линии соответственно 5,2 м. Потери теплоты через неутепленные полы определяем по зонам, паралельным наружним стенам. Сопротивление теплопередаче для первой зоны составляет Rн. пол –2,15, для второй –4,3 и для третьей 8,6. Для остальной части пола –14,2 (м2 0С)/Вт. Площадь участков пола, примыкающего к углам в первой двухметровой зоне вводится в расчет дважды, т.е. по направлению обеих наружних стен, образующих угол. Разделим площадь пола на двухметровые зоны и получим две зоны шириной по 2м и одну зону шириной 1,2 м. Площади данных зон равны: F1= F2= 26,3*2=52.6м2; F3= 26,3*1.2=31.56м2

Rу. пол2 0С)/Вт,

Сопротивление теплопередаче Rо пол2 0С)/Вт, для каждой из зон определяем по формуле Rу. пол= Rн. пол + δ /λ

Зона 1 Rу. пол= 2,15+ 0,1/0,92=2,15+0,11=2,26

Зона 2 Rу. пол= 4,3+ 0,1/0,92=2,15+0,11=4,44

Зона 3 Rу. пол= 8,6+ 0,1/0,92=2,15+0,11=8,71

Суммарные теплопотери по всем зонам пола

Фп =F/R0(tв - tн)n =2*[(1/2,26)*52,6+(1/4,44)*52,6 + (1/8,71)*31,56]*(16+18)*0,9=

2*(23.27+11.85+3.62)*34*0.9=2370.9Вт

Общие потери через все ограждения

Ф=ΣФ=2370,9+282,9+31833=34485,9Вт

Добавочные теплопотери

Добавочные теплопотери определяются суммой теплопотерь расходуемой на:

·    вентиляцию помещения,

·    испарение влаги,

·     нагрев инфильтрующего воздуха

Вентиляция помещения,

Поток теплоты теряемый на нагрев приточного воздуха определяется соотношением

Ф =0,278*Q*ρc(tв - tн)

Где Q нормативный воздухообмен, принимаемый равным Q =3м3

ρ - плотность воздуха ρ=1,2кг/м2

c- массовая изобарная теплоемкость воздуха c=1кДж/кг оС

Ф =0,278*3*1,2*1*34*26,3*10,4=9306,11Вт

Для оценочного расчета максимального теплового потока расходуемого на вентиляцию воспользуемся методом укрупненных характеристик Ф =qв*V*(tв - tн)

Где qв V- удельная тепловая характеристика здания, берется по приложению 13 и объем помещения

Ф =0,2*1942*(16+18)=13205Вт

Аналогично для оценочного расчета максимального теплового потока расходуемого на отопление воспользуемся методом укрупненных характеристик Ф =qв*V*(tв - tн)*а

Где qот, V, а - удельная тепловая характеристика здания, берется по приложению 13,, объем помещения, поправочный коэффициент, учитывающий влияние разности температур а=0,54+22/(tв - tн) =0,54+22/34=0,54+0,65=1,11

Ф =0,6*1942*(16+18)*1,1=43578,5Вт

Испарение влаги

Поток теплоты теряемый на испарение влаги с мокрых поверхностей

определяется соотношением

Ф =0,278*2,49*Wисп

Для данного случая эти потери не учитываются.

 

 

Бытовые тепловыделения берутся из расчета 21Вт на 1 кв.м. площади пола и вычитаются из суммы основных и добавочных теплопотерь.

Ф =21Fн=21* 273.5=5743,5 Вт

Нагрев от используемого технологического оборудования

Величина тепловыделения для каждого конкретного прибора будет различной эквивалентное значение для всего используемого оборудования равно

Фоб =2653Вт

 

Нагрев инфильтрующего воздуха

Поток теплоты теряемый на нагрев наружного воздуха, инфильтрующегося через притворы окон, фрамуг, дверей и ворот определяется соотношением

Ф =Q*ρc(tв - tн)*Fп/3,6 =3*1,2*1*34*26,3*10,4/3,6=9299,68Вт

 

Тепловая мощность всей системы отопления определяется из уравнения теплового баланса и равна

Фот =34485,9+9306,11+9299,68-5743,5-2653 = 44695Вт

Из которой на первый этаж (полуподвальное помещение) приходится Фот1 = 20000Вт

И на производственное помещение второго этажа Фот2 = 24695 Вт

Определим удельную тепловую характеристику здания по формуле:

Выбор котла и места расположения котельной

Выбор котла определяется количеством требуемой тепловой мощности и его назначения .

Для отопительно-производственных котельных малой мощности находят широкое применение чугунные секционные котлы, нагревающие воду до 115оС. Наибольшее распространение среди чугунных котлов в нашей стране получили котлы марок КЧМ, КЧ-1(малой мощности),Универсал-6(КЧ-2) средней мощности и Энергия-6(тип КЧ-3). Используя полученное значение тепловой мощности по таблице 1.1 выбираем чугунный котел типа КЧМ-1, тепловой мощностью от 16,3 до 46,5 кВт. Котел малогабаритный расположить его можно в подсобном помещении цеха.

 Определяем диаметры труб и потери давления в двухтрубной закрытой водяной тепловой сети от котла до потребителя длиной 30 м, через которую подается тепловой поток Ф=44695Вт. Примем расчетные температуры теплоносителя tп=95 оС. tо=70 оС и на ней установлены две задвижки ζ=0,7 и два гнутых отвода радиусом R=2d для которых ζ=0,5

Расход теплоносителя определяем по соотношению Qт=3,6*Ф/4,19(tп - tо)

Qт=3,6*44,695/(4,19(95-70))= 160,92/104,75=1,53 т/ч

Принимаем удельные потери давления ΔР=70Па/м и по приложению 2 находим среднюю плотность теплоносителя ρ=970 кг/м3

Расчетный диаметр труб определим по соотношению d=0.263Q0.38/ (ρ ΔР) 0.19

=0.263*1,530.38/(970*70) 0.19=0.263*1,18/8.28=0.037м

Принимаем в соответствии с ГОСТ 10704-76 трубу стальную электросварную прямошовную внутренний диаметр которой d=41 мм ближе всего к расчетному значению.

Определяем коэффициент трения , используя выражение С.Ф.Копьева

λ=0,014/ d 0.25 =0,014/0,0410.25=0,014/0,45=0,031

Сумму коэффициентов местных сопротивлений определяем по соотношению

Σζ=2*0,7+2*0,5=2,4

Эквивалентная длина местных сопротивлений определяется по соотношению

Lэ= Σζ(d/λ)=2,4*0,041/0,031=3,17м

Общая потеря давления в подающем и обратном теплопроводах

ΔРс=2(30+3,17)70=4643,8Па

 

·     ОПРЕДЕЛЕНИЕ ГОДОВОГО РАСХОДА ТОПЛИВА

Годовой расход теплоты на отопление исходя из полученных значений тепловых потерь и требуемой мощности котлов определяется по соотношению

Qт=3,6*ΣQ(tв - tо.п.) 24nо.п / (tв - tн)=3,6*44.695*(18-1,5)*24*152/(18+18)=968кДж

Следовательно годовой расход топлива с учетом КПД котельной для газообразного топлива η=0,8

В= Qт/q η=968/(0,8*85,6)=14,1т.куб.м.

Определяем поверхность нагрева и осуществляем подбор нагревательных приборов системы водяного отопления.

 

·     Для полуподвального помещения (1 этаж) схемы. Фот1 = 20000 Вт

В качестве нагревательных приборов принимаем чугунные ребристые трубы. Температура теплоносителя в подающей магистрали 95°С, а в обратной 70°С.

Определим вначале тепловой поток от трубопровода в системы отопления. Для его определения используем соотношение

Фпмтр k тр(tтр - tв) *η

Где k тр -  коэффициент теплопередачи труб берется по таблице 1,4 (2) и η-коэффициент учитывающий разводку труб(подающая линия - над потолком η=0,25, вертикальный стояк η=0,5, для обратной линии над полом η=0,75 и для подводок к нагревательным приборам η=1) .

Для нашей системы теплоснабжения подающий трубопровод находится под окнами, т.е. в рабочей зоне помещения, там же где и нагревательные приборы. Поэтому для него как и для подводок к приборам , коэффициент η=1. Для обратной линии, расположенной над полом η=0,75.

Площадь поверхности подающего и обратного магистральных трубопроводов наружным диаметром d=42,3 мм(dу=32мм) и длиной l=25м

l

d

Ап.м.о.м.= π*d*l=3,14*0,043*25=3,38м2.

Площадь поверхности шести подводок (по две на прибор) диаметром 26,8 мм(dу=20мм) и длиной 0,8 м каждая Апод*d*l=6*3,14*0,0268*0,8=0,4м2 .

Коэффициент теплопередачи подающего трубопровода для средней разности температуры воды в трубе и температуры воздуха в помещении 95-18=77°С. принимаем по таблице 1,4 k=13,4 Вт/(м2 *˚С).Коэффициент теплопередачи обратной магистрали для разности между температурой воды и температурой воздуха 70-18=52˚С

 k=11,6 Вт/(м2 *˚С), а для подводок при средней разности температур (95+70)/2-18=64,5˚С k=14 Вт/(м2 *˚С), тогда по формуле

Фпмтр k тр(tтр - tв) *η

для подающей магистрали

Фп.м.=3,38*13,4(95-18)=3482Вт

 

Для обратной магистрали

Фо.м.=3,38*11,6(70-18)=2038Вт

для подводок

Фпод=0,4*14((95+70/2)-18)=361Вт

Суммарный поток теплоты от всех трубопроводов Фтр=3482+2038+361=5881 Вт

Принимаем β1=1(нагревательные приборы установлены свободно у стены), β2=1(трубы проложены открыто). Полагая, что под каждым окном ,будет установлено по одной чугунной ребристой трубе, находим по таблице 1,4kпр=5,8 Вт/(м2 *˚С). Тогда по формуле (1.8) площадь поверхности нагрева приборов

Апр =(Фогр- Фтр) β1 β2 / kпр (tтр - tв)  = (20000-5881)/5,8((95+70)/2-18)=86100/374,1=38кв.м

 

Принимаем для установки ребристые трубы длиной 2000 мм, фактическая площадь поверхности нагрева которых равна 4 м2(см.табл.5,2).Число таких труб n=38/4≈10

Под каждым окном устанавливается по одной ребристой трубе!

 

·     Для производственного корпуса (2 этаж) схемы. Фот2 = 24000 Вт

Высота стояков 3,6м диаметром 20мм - 10 штук и подводки к радиаторам трубой диаметром 20мм общей длиной 30*0,5=15м

Поверхность нагрева вычисляем в квадратных метрах эквивалентной площади по соотношению F тр =f *l *η.

Для этого определим для f=0.15 м2 (стояки и подводки диаметром трубы 20мм) и коэффициент η=0,5 для вертикального стояка и для подводок к нагревательным приборам η=1) .

F тр=10*0,15*3,6*0,5+0,15*15*1=2,7+2,25=4,97 м2

 

Теплоотдачу 1 м2 м находим по соотношению φ=k эт4*Δt

Где β4= 1 и k эт=7,9 определено по приложениям 17 и 18

Δt= (tтр - tв )=(95-70)/2-18=64,5

φ=k эт4*Δt=7,9*1*64,5=509,55=510Вт/ м2

Необходимая эквивалентная площадь поверхности нагрева радиаторов определяем по соотношению

F пр=(Фогр* β2/ φ - F тр) β1 β3=(24000*1/510-4.97)*1.02*1.05=45,07 м2

Для радиаторов М-140-АО число секций определится

N=45,07/0,35=128секции

Принимаем для 135 секций и размещаем их по 9 секций для каждого из 15 окон второго этажа

·     Гидравлический расчет системы отопления

Вычерчиваем в масштабе аксонометрическую схему системы отопления с указанием магистральных трубопроводов, стояков, запорно-регулировочной арматурой. Для данной схемы выбираем главное циркуляционное кольцо. Определяем расчетное циркуляционное давление Р=Рн+Ре. Учтем что для производственных помещений и малоэтажных жилых домов значением естественного давления Ре можно пренебречь и согласно рекомендациям профессора В.М.Чаплина принять давление Рн создаваемое насосом исходя из среднего значения давления равного 100Па на метр наиболее протяженного циркуляционного кольца. Среднее значение удельных потерь давления на трение в трубопроводах для данного кольца равно

Rср=0,65Р/Σl

Общая длина трубопроводов для выбранной схемы равна Σl=100м

Располагаемое циркуляционное давление в системе равно

Р=100*100=10000Па

Определяем среднюю потерю давления на трение

Rср=0,65Р/Σl=0,65*10000/100=65Па/м

Для каждого из участков определяем расход теплоносителя по формуле

Qм=3,6Ф/4,19 Δt

И заносим результаты расчета в таблицу.

Главное циркуляционное кольцо

уч-ка

Ф,Вт Q кг/ч l,м d, мм vм/с R,Па/м Rl, Па Σζ Z,Па Ri+Z,Па
1 12800 439,9045

 

 

 

·     Произвести расчет гидроэлеватора и тепловые потери для случая подключения помещения к существующей тепловой сети.

Другие материалы

  • Гидравлический расчёт узла гидротехнических сооружений
  • ... Т Е Р А Т У Р А Андреевская А.В., Кременецкий Н.Н., энергия 1964 г. Методические указания к курсовой работе по гидравлике на тему: «Гидравлический расчёт узла гидротехнических сооружений». ПГСХА. Сост. Т.И. Милосердова – Уссурийск, 1994 г. Методические указания к практическим занятиям по гидравлике ...

  • Расчет гидравлической системы
  • ... Реальная гидравлическая система уборки (выпуска) шасси самолета значительно сложнее рассматриваемой, т.к. имеет дублирующие линии, элементы, повышающие надёжность, системы тонкого регулирования и управления и др. Для подобных и более сложных гидравлических систем используется сетевой метод расчета. ...

  • Расчёт и проектирование регулирующего клапана
  • ... ;    профилирование плунжера регулирующего клапана Требуемая пропускная характеристика регулирующего клапана обеспечивается изготовлением специальной формы поверхности окон. Оптимальный профиль плунжера получается в результате расчёта гидравлического сопротивления дроссельной пары ...

  • Расчёт многокорпусной выпарной установки
  • ... пара до 0,03 МПа для отвода конденсата могут применяться гидравлические затворы (петли).   8.1.1 Расчёт конденсатоотводчиков для первого корпуса выпарной установки Из условия видно, что Рг = 0,4 МПа, значит, применим термодинамические конденсатоотводчики. 1) Расчётное количество конденсата ...

  • Технология гидравлического разрыва пласта
  • ... пробковых кранов, предохранительного клапана и прочих элементов обвязки. Для регулирования работы всего комплекса оборудования и агрегата при гидравлическом разрыве пласта используется самоходный блок манифольда типа 1БМ-700, который состоит из напорного и раздаточного коллекторов, подъемной стрелы ...

  • Разработка системы синхронизации положения траверсы гидравлического пресса усилием 75000тс
  • ... и при необходимости отключить приводной электродвигатель для предотвращения аварийных ситуаций. Первоочередной задачей при разработке системы синхронизации положения траверсы пресса является расчет управляемого впускного клапана, т.к. данный гидроаппарат не является типовым и не имеет справочных ...

  • Расчёт и крепление обсадных колонн
  • ... рцр  роцр  рн H1 H2 Pоп Рпл 2700 750 440 1200 2590 1.00 1.2 1.83 1.48 0.84 680 1580 12,5 26,7 Для качественного крепления обсадной колонны выбираем портландцемент ПЦТ-100, процесс цементирования производится в одну ступень. Определяем водоцементное отношение ...

  • Гидравлический расчет объемного гидропривода механизма подачи круглопильного станка
  • ... Температура воздуха t, оС……………………………………………..20 Произвести гидравлический расчет гидросистемы зажима бревна гидравлической тележкой ПРТ8-2 по исходным данным. Рис. 1. Схема гидравлическая принципиальная механизма зажима бревна гидравлической тележки ПРТ8 - 2: 1 – гидробак; 2 – насос; 3 ...

  • Расчёт ректификационной колонны непрерывного действия
  • ... 7-теплообменник 8-промежуточная ёмкость 9-насос 10- теплообменник 11-ёмкость. ЗАДАНИЕ №1 «Расчет ректификационной колонны непрерывного действия» Провести расчет ректификационной колонны непрерывного действия для разделения смеси бензол-толуол с определением основных геометрических ...

  • Расчёт закона управления продольным движением самолета
  • ... nbsp; План выполнения курсовой работы Целью работы является расчет алгоритма управления продольным движением самолета, обеспечивающего выполнение требований к характеристикам системы управления, сформулированным в техническом задании. Функциональная схема проектируемой системы представлена на рис ...

  • Расчеты гидравлических величин
  • ... устойчивой работы насоса, соединённого трубопроводом, является равенство, развиваемого насосом напора, величине потребного напора трубопровода. Для расчета коэффициента гидравлического сопротивления (коэффициент трения) воспользуемся формулой Шифринсона: Для расчёта линейного ...

  • Расчёт поршневых гидроцилиндров на прочность
  • асчётная схема гидроцилиндра. I-поршневая безштоковая полость II-штоковая полость 1-цилиндр 2-поршень с уплотнителем 3-крышка глухая 4-шток (бывает тонкий или толстый) 6-трубопровод соединённый через распределители жидкости с гидравлическим насосом D-диаметр поршня d-диаметр штока L-длина штока, при ...

  • Расчёт гидропривода тормоза однобарабанной шахтной подъемной машины
  • ... 11; дроссель 12; реверсивного золотника 13 (рис. 1). Рисунок 1. Гидравлическая схема гидропривода 1.2 Выбор стандартного давления Стандартные давления нормализованы ГОСТ 12445-80. Завод изготовитель подъемных машин принимает давление 1,25 МПа. Более перспективными будут давления 1,6; 2,5 ...

  • Конструкции и расчёт объёмных гидромашин и элементов гидропривода
  • ... изменением «е» Одной из распространённых модификаций является высокомоментальный гидропривод для ходовых колёс.  Высокомоментальный гидродвигатель называют ещё тихоходные гидромоторы. К.П.Д. M= Шестерённые гидромашины  бывают с наружным зацеплением и с внутренним. Схема ...

  • Расчёт затрат и тарифов на услуги
  • ... решает само предприятие.   Раздел 3. Значение единого механизма, формирование цен (тарифов) на услуги водоснабжения и водоотведения Тарифы (цены) на услуги водоснабжения и водоотведения разрабатываются на предприятиях в соответствии с указаниями президента РФ «О мерах по упорядочению ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info