Движение заряженных частиц

Заказать работу
Содержание 1. Движение электрона в равномерном магнитном поле, неизменном во времени и направленном перпендикулярно скорости……………………..3

2. Движение электрона в неизменном во времени магнитном поле, когда скорость электрона не перпендикулярна силовым линиям……………….4

3. Фокусировка пучка электронов по­стоянным во времени

магнитным полем (магнитная линза)……………………………………….6

4. Движение электронов в равномерном электрическом поле. Принцип работы электронного осциллографа………………………………………...7

5. Фокусировка пучка электронов постоянным во времени

электриче­ским полем (электрическая линза)……………………………….8

6. Движение электрона в равномерных, взаимно перпендикулярных, неизменных во времени магнитном и электрическом полях………………9

7. Движение заряженных частиц в кольцевых ускорителях………………11

Движение заряженных частиц в магнитном и электрическом полях

1. Движение электрона в равномерном магнитном поле, неизменном во времени и направленном перпендикулярно скорости.

В данных разделах под заряженной частицей мы будем подразумевать электрон. Заряд его обозначим q=-qэ  и массу m. Заряд примем равным qэ=1,601.10-19 Кл, при скорости движения, значительно меньшей скорости света, масса m=0,91.10-27 г. Полагаем, что имеет место достаточно высокий вакуум, так что при движении электрон не сталкивуается с другими частицами. На электрон, движущийся со скоростью в магнитном поле индукции,  действует сила Лоренца .


На рис 1 учтено, что заряд электрона отрицателен, и скорость его направлена по оси y, а индукция по оси- x. Сила направлена перпендикулярно скорости и является центробежной силой. Она изменяет направление скорости, не влияя на числовое значение.

Электрон будет двигаться по окружности радиусом r с угловой частотой wц, которую называют циклотронной частотой. Центробежное ускорение равно силе f, деленной на массу .

Отсюда

(1)

Время одного оборота

Следовательно

(2)

2. Движение электрона в неизменном во времени магнитном поле, когда скорость электрона не перпендикулярна силовым линиям.

Рассмотрим два случая: в первом- электрон будет двигаться в равномерном, во втором – в неравномерном поле.

а) Движение в равномерном поле. Через a на рис 2. Обозначен угол между скоростью электрона и индукцией . Разложим  на , направленную по  и численно равную , и на  , направленную перпендикулярно  и численно равную . Так как  , то наличие составляющей скорости  не вызывает силы воздействия на электрон. Движение со скоростью приводит к вращению электрона вокруг линии  подобно тому, как это было рассмотрено в первом пункте. В целом электрон будет двигатся по спирали рис. 2. б. Осевой линией которой является линия магнитной индукции. Радиус спирали  шаг спирали

(3)



Поступательное и одновременно вращательное движение иногда называют дрейфом электрона.

Рис 2. б.

б) Движение в неравномерном поле. Если магнитное поле неравномерно, например сгущается ( рис.2 в.), то при движении по спирали электрон будет попадать в точки поля, где индукция В увеличивается. Но чем больше индукция В, тем при прочих равных условиях меньше радиус спирали r. Дрейф электрона будет происходить в этом случае по спирали со всем уменьшающимся радиусом. Если бы

магнитные силовые линии образовывали расходящийся пучок, то электрон при своем движении попадал бы в точки поля со все уменьшающейся индукцией и радиус спирали возрастал бы.


Рис 2. в.

 

3. Фокусировка пучка электронов по­стоянным во времени магнитным полем (магнитная линза).

Из катода электронного прибора (рис. 3) выходит расходящийся пучок электронов. Со скоростью  электроны входят в неравномерное магнитное поле узкой цилиндрической катушки с током.

Разложим скорость электрона  в произвольной точке т на две составляю­щие: и .

Первая  направлена противоположно , а вторая -перпендикулярно . Возникшая ситуация повторяет ситуацию, рассмотренную в пункте 2. Электрон нач­нет двигаться по спирали, осью которой является . В результате электронный пучок фокусируется в точке b.


4. Движение электронов в равномерном электрическом поле. Принцип работы электронного осциллографа.

 Электрон, пройдя расстояние от катода К до узкого отверстия в аноде А (рис. 4, а), под действием ускоряющего напря­жения Uак увеличивает свою кинетическую энергию на величину работы сил по­ля.


Скорость с которой электрон будет двигаться после выхода в аноде из отверстия 0, найдем из соотношения

При дальнейшем прямолинейном движении по оси х электрон попадает в равномерное электрическое поле, напряженностью Е между отклоняющими пластинами 1 и 2 (находятся в плоскостях, параллельных плоскости zох).


Напряженность Е направлена вдоль оси у. Пока электрон движется между от­клоняющимися пластинами, на него действует постоянная сила Fy = —qэE. направленная но оси —у. Под действием этой силы электрон движется вниз рав­ноускоренно, сохраняя постоянную скорость вдоль оси х. В результате в про­странстве между отклоняющими пластинами электрон движется по параболе. Когда он выйдет из поля пластин 1—2. в плоскости уох он будет двигаться по касательной к пара­боле. Далее он попадает в поле пластин 3—4 , которые создают развертку во времени. Напряже­ние U 31 между пластинами 3—4 и напряженность поля между ними E1 линейно нарастают во времени (рис. 4, б). Электрон получает отклонение в направлении оси z, что и даст развертку во времени.

5. Фокусировка пучка электронов постоянным во времени электриче­ским полем (электрическая линза).

 Фокусировка основана на том что, проходя через участок неравномерного электрического поля, электрон отклоняется в сто­рону эквипотенциали с большим значением потенциала (рис. 5, а). Электриче­ская линза образована катодом, испускающим электроны, анодом, куда пучок электронов приходит сфокусированным, и фокусирующей диафрагмой, пред­ставляющей собой пластинку с круглым отверстием в центре (рис. 5, б). Диа­фрагма имеет отрицательный потенциал по отношению к окружающим ее точ­кам пространства, вследствие этого эквинотенциали электрического поля как бы выпучиваются через


диафрагму по направлению к катоду. Электроны, проходя через отверстие в диафрагме и отклоняясь в сторону, фокусируются на аноде.

6. Движение электрона в равномерных, взаимно перпендикулярных, неизменных во времени магнитном и электрическом полях.


Пусть электрон с зарядом q= —qэ, и массой т с начальной скоростью  оказался при t = 0 в начале, координат (рис. 6, а) в магнитном и электрическом полях. Магнитная индукция направлена по оси  т. е. Bx=B. Напряжен­ность электрического поля направлена по оси , т. е. . Дви­жение электрона будет происходить в плоскости zoy со скоростью .

Уравнение движения   или

Следовательно, ;

В соответствии с формулой (2) заменим qэB/m на циклотронную частоту wц. Тогда

(4)

(5)

Продифференцируем (4) по t и в правую часть уравнения подставим (5).

(6)

Решим уравнение классическим методом: vy=vy пр+vy св :

Составим два уравнения для определения постоянных интегрирования.

Так как при t=0 vy=v, то . При t=0 vz=0. Поэтому  или. Отсюда и .

Таким образом,

Пути, пройденные электроном по осям у и z:

На рис. 6, б, в, г изображены три характерных случая движения при различных значениях v0. На рис.  6, б трохоида при v0=0, максимальное от­клонение по оси z равно .

Если v0>0 и направлена по оси +y, то траекторией является растянутая

трохоида (рис. 6, в) с максимальным отклонением .

Если v0<0 и направлена по оси —у, то траекторией будет сжатая трохоида (рис. 6, г) с .

Когда магнитное и электрическое поля мало отличаются от равномерных, траектории движения электронов близки к трохоидам.


Рис 6.б

Рис 6.в

Рис 6.г


7. Движение заряженных частиц в кольцевых ускорителях.


Циклотрон представляет собой две полые камеры в виде полуцилиндров из проводящего неферромагпитного материала. Эти камеры находятся в сильном равномерном маг­нитном поле индукции , направленном на рис. 7 сверху вниз. Камеры по­мещают в вакуумированный сосуд (на рисунке не показан) и присоединяют к ис­точнику напряжения Umcos(wt). При t=0, когда напряжение между камерами имеет максимальное значение, а потенциал левой камеры положителен по отношению к правой, в пространство между камерами вводят положительный заряд q. На него будет действовать сила . Заряд начнет двигаться слева направо и с начальной скоростью  пойдет и правую камеру. Но внутри камеры напряжен­ность электрического поля равна нулю. Поэтому, пока он находится там. на не­го не действует сила, но действует сила , обусловленная магнитным полем. Под действием этой силы положительный заряд, двигающийся со скоростью v, начинает


движение по окружности радиусом . Время, в течение которого он совершит пол-оборота,. Если частоту приложенного между камерами напря­жения взять равной , то к моменту времени, когда заряд выйдет из правой камеры, он окажется под воздействием электрического поля, на­правленного справа налево. Под действием этого поля заряд увеличивает свою скорость и входит в левую камеру, где совершает следующий полуоборот. но уже большего радиуса, так как имеет боль­шую скорость. После k полуоборотов заряженная частица приобретает такую скорость и энергию, ка­кую она приобрела бы, если в постоянном электриче­ском поле пролетела бы между электродами, раз­ность потенциален между которыми kUm. На рис 8. показано движение заряженных частиц в циклотроне.

Рис 8.

Вывод заряда из циклотрона осуществляется с помощью постоянного электрического поля, созда­ваемого между одной из камер (на рис. 7 пра­вой) и вспомогательным электродом А. С увеличением скорости она становится соизмеримой со скоростью света, масса частицы т во много раз увеличивается. Возрастает и время t1, прохождения полуоборота. Поэтому одновременно с увеличением скорости частицы необходимо уменьшать либо частоту источника напряжения Umcos(wt) (фазотрон), либо величину индукции магнитного поля (синхротрон), либо частоту и индукцию (синхрофазотрон).

Другие материалы

  • Исследование заряженных аэрозолей электрооптическим методом
  • ... фотометра было исследовано влияние, которое оказывает процесс униполярного заряжения аэрозолей на ход полевых зависимостей электрооптического отклика  E) и  (E2). Регистрация  осуществлялась с помощью селективного усилителя УПИ-1, подключенного к выходу ФЭУ и ...

  • Моделирование в физике элементарных частиц
  • ... к искомым величинам, называют алгоритмом. 2.  Историческое развитие моделей элементарных частиц 2.1 Три этапа в развитии физики элементарных частиц Этап первый. От электрона до позитрона: 1897-1932гг (Элементарные частицы - "атомы Демокрита" на более глубоком уровне) Когда ...

  • Взаимодействие бета-частиц с веществом
  • ... через поглощающую среду существенную роль играют потери на излучение. Взаимодействие бета - частиц с кулоновским полем атомных ядер приводит к торможению бета - частиц с испусканием тормозного излучения. В соответствии с классической электродинамикой заряд, испытывающий ускорение a, излучает энергию ...

  • История развития ускорителей заряженных частиц
  • ... не особенно быстрых заряженных частиц, подчиняющихся законам ньютоновской механики. В постоянном магнитном поле они станут закручиваться и двигаться по инерции по окружностям фиксированного радиуса (разумеется, в камере должен быть вакуум). Такое устройство можно превратить в ускоритель. Для ...

  • История открытия элементарных частиц
  • ... задач физики.  От электрона до нейтрино Электрон Исторически первой открытой элементарной частицей был электрон — носитель отрицательного элементарного электрического заряда в атомах. Это самая «старая» элементарная частица. В идейном плане он вошел в физику в 1881 г., когда Гельмгольц в ...

  • Элементарные частицы
  • ... , перед разборкой пачки на все слои наносится с помощью рентгеновских лучей одинаковая координатная сетка. Виды взаимодействий Под элементарными частицами понимают такие микрочастицы, внутреннюю структуру которых на современном уровне развития физики нельзя представить как объединение других ...

  • Мир элементарных частиц
  • ... на лептоны, адроны и переносчики взаимодействий исчерпывает мир известных нам субатомных частиц. Каждый вид частиц играет свою роль в формировании структуры материи и Вселенной. 3. Теории элементарных частиц 3.1. Квантовая электродинамика (КЭД) Квантовая механика позволяет описывать движение ...

  • Элементарные частицы в виде корпускул и волн и модель атома
  • ... , Т3 (тритий) (β) : 0,018 Мэв]. Энергия космических лучей от 103 до 1012 Мэв. 2. Представление элементарных частиц в виде корпускул и волн Основные сведения об элементарных частицах, приведенные в разделе А, могут быть получены с помощью достаточно простых экспериментальных устройств. ...

  • Исследование реакции нижней ионосферы на высыпание энергичных частиц из радиационных поясов Земли
  • ... широтах. (В данной главе рассмотрены различные случаи высыпаний высокоэнергичных частиц под воздействием различных типов волн: свистов и ионно-циклотронных)  Во время геомагнитных возмущений высыпание энергичных электронов из радиационных поясов Земли может быть основным источником притока энергии ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info