Двигатели постоянного тока

Заказать работу

Двигатели постоянного тока используются в прецизионных приводах, требующих плавного регулирования частоты вращения в широком диапазоне.

Свойства двигателя постоянного тока, так же как и генераторов, определяются способом возбуждения и схемой включения обмоток возбуждения. По способу возбуждения можно разделить двигатели постоянного тока на двигатели с электромагнитным и магнитоэлектрическим возбуждением.

Двигатели с электромагнитным возбуждением подразделяются на двигатели с параллельным, последовательным, смешанным и независимым возбуждением.

Электрические машины постоянного тока обратимы, то есть, возможна их работа в качестве двигателей или генераторов.

Например, если в системе управления с использованием генератора в обратной связи отсоединить генератор от первичного двигателя и подвести напряжение к обмоткам якоря и возбуждения, то якорь начнет вращаться и машина будет работать как двигатель постоянного тока, преобразуя электрическую энергию в механическую. Двигатели независимого возбуждения наиболее полно удовлетворяют основным требованиям к исполнительным двигателям самоторможение двигателя при снятии сигнала управления, широкий диапазон регулирования частоты вращения, линейность механических и регулировочных характеристик, устойчивость работы во всем диапазоне вращения, малая мощность управления, высокое быстродействие, малые габариты и масса.

Однако двигатели постоянного тока имеют существенные недостатки, накладывающие ограничение на область их применения малый срок службы щеточного устройства из-за наличия скользящего контакта между щетками и коллектором, скользящий контакт является источником радиопомех.

Рис. 1.1. Структурная схема двигателя независимого возбуждения

Подставим в уравнение второго закона Кирхгофа для якорной цепи  и  получим

,

,

где - якорное сопротивление, - добавочное сопротивление.

Электродвижущая сила (ЭДС) якоря - пропорциональна угловой скорости - , связь между ЭДС и угловой скоростью, а так же между вращающим моментом  и  в системе единиц СИ определяется единым электромагнитным коэффициентом

,

где  - число пар полюсов двигателя,  - число проводников обмотки якоря,  - число пар параллельных ветвей обмотки якоря,  - магнитный поток.

Причем

,

где  - конструктивный коэффициент.

,

,

тогда E якоря

,

а момент

,

и напряжение, подаваемое на двигатель

,

откуда

,

механическая характеристика двигателя постоянного тока записывается в виде

.

Следовательно, механическая характеристика при Ф = const представляет собой прямую линию. Угловую скорость, соответствующую при М = 0 и номинальном напряжении - Uном запишем в виде

.

Эту скорость называют угловой скоростью идеального холостого хода.

,

Рис. 1.2. Механические характеристики в двигательном режиме

Рассмотрим установившиеся режимы работы двигателя постоянного тока для случая соответствующего постоянному моменту сопротивления.

Такая схема нагружения двигателя постоянного тока соответствует подъему или спуску постоянного груза.

Рис. 1.3. Структурная схема нагружения двигателя постоянного тока для постоянного момента нагружения

Рассмотрим обобщенные механические характеристики двигателя постоянного тока

Рис. 1.4. Механическая характеристика двигателя постоянного тока

В первом квадранте двигатель постоянного тока находится в двигательном режиме и потребляет энергию из сети. При вращении якоря со скоростью w>w0 двигатель постоянного тока переходит из двигательного режима с моментом М>0 (первый квадрант) в генераторный режим (второй квадрант) с отрицательным вращающим моментом (якорь вращается перпендикулярно, например, под действием инерции исполнительного механизма). При этом момент М<0 и Iя<0, т.е. двигатель постоянного тока отдает энергию в сеть.

Положив в выражение для механической характеристики w=0 и R=Rя, U=Uном, получим пусковой момент

.

Так как пусковой ток

,

то

.

При включении двигателя без добавочного резистора (естественная характеристика - 1) груз поднимается со скоростью двигателя w1. При включении добавочного резистора (искусственная характеристика - 2) груз не подвижен (w2=0). При работе двигателя в режиме, определяемом характеристикой 3, груз опускается со скоростью w1, искусственная характеристика 4 соответствует режиму динамического торможения, заключающемуся в отсоединении якорной цепи от источника и замыкании ее на добавочный резистор, характеристика 5 аналогична характеристике 2, но напряжение U=Uном, характеристика 6 параллельна характеристики 1 и соответствует во втором квадранте противовключению при подаче напряжения U=Uном.

Другие материалы

  • Двигатель ЗиЛ-130
  • ... чрезмерный подо­грев горючей смеси нежелателен, так как при этом объем смеси увеличивается, а весовое наполнение цилиндров уменьшается. В двигателе ЗИЛ-130 подогрев горю­чей смеси происходит за счет тепла, отдаваемого цирку­лирующей жидкостью в полости охлаждения впускного трубопровода. При пуске ...

  • Разработка системы управления асинхронным двигателем с детальной разработкой программ при различных законах управления
  • ... и исследование автоматической системы регулирования (АСР) асинхронного высоковольтного электропривода на базе автономного инвертора тока с трехфазным однообмоточным двигателем с детальной разработкой программы высокого уровня при различных законах управления. В ходе конкретизации из поставленной ...

  • Режимы работы асинхронных двигателей
  • ... ; при мощности более 1 кВт он составляет 0,7—0,9; в микродвигателях 0,3—0,7. Общие сведения о режимах работы асинхронного двигателя. В двигательном режиме разница частот вращения ротора и поля статора в большинстве случаев невелика и составляет лишь несколько процентов. Поэтому частоту вращения ...

  • Проектирование двухскоростного асинхронного двигателя для привода деревообрабатывающих станков
  • ... Таблица 7.1. СФА АД Система асинхронного двигателя для структурно-функционального анализа представлена на рис. 7.2.   Рис. 7.2. Схема для СФА Матрица механической связи основных элементов структуры асинхронного электродвигателя приведена ниже в табл. 7.2. Табл. 7.2. Подшип-ник Ста-нина ...

  • Управление асинхронным двигателем
  • ... 215; t + g 2. ТЕХНИЧЕСКОЕ ЗАДАНИЕ 2.1 Наименование и область применения Разрабатываемое устройство называется: автоматическая система управления асинхронным двигателем. Область применения разрабатываемого устройства не ограничивается горнодобывающей промышленностью и может использоваться на любых ...

  • Радикальная экономия электроэнергии переменного тока
  • ... как сложной индуктивности, работающей как циклический накопитель электромагнитной энергии , причем в динамике и на переменном токе . Для того чтобы разобраться с методами радикальной экономии электроэнергии в электрических машинах надо уяснить физику процессов обмена энергиями (электрической энергии ...

  • Асинхронный двигатель
  • ... объясняется уменьшением скорости вращения при увеличении полезной мощности. Зависимость коэффициента мощности cos j  от полезной мощности двигателя имеет сложный вид. Асинхронный двигатель потребляет индуктивный ток для создания магнитного потока. Величина этого тока очень мало зависит от нагрузки ...

  • Двигатель
  • ... слышен тот сильный грохот, когда по дороге едет автомобиль без глушителя выхлопных газов, но об этом позже. А пока обратим внимание на коленчатый вал двигателя - при такте выпуска он делает еще пол-оборота. И всего, за четыре такта рабочего цикла, он сделал два полных оборота. После такта выпуска ...

  • Разработка асинхронного двигателя с короткозамкнутым ротором
  • ...  (194)   Кратность пускового тока:  (195) Кратность пускового момента:  (196) Формулы для расчета токов в пусковом режиме асинхронного двигателя с КЗ ротором с учетом эффекта вытеснения тока.  (197) . (198)  (199)  (200)  (201)  (202)  (203)  (204)  (205)  (206)  (207) ...

  • Синхронные машины. Машины постоянного тока
  • ... обмотка, в которой при вращении ротора индуктируется э. д.с. Таким образом, ротор машины постоянного тока является якорем, а конструкция машины сходна с конструкцией обращенной синхронной машины. При заданном направлении вращения якоря направление э. д. с, индуктируемой в проводниках, зависит ...

  • Техническая эксплуатация и ремонт двигателей постоянного тока
  • ... они должны быть калиброваны с указанием их номинального тока. Применять некалиброванные вставки запрещается. 4. Ремонт двигателей постоянного тока   4.1 Организация ремонта   Для проверки состояния двигателя, устранения неисправностей и повышения надежности периодически проводят ...

  • Электрические ракетные ионные двигатели
  • ... ЭРД, рабочие процессы в которых различаются принципиальным образом. 1.Ионные, или электростатические, ЭРД. 2.Двигатели с азимутальным дрейфом электронов. 3.Сильноточные двигатели. 4. Теплообменные электрические ракетные двигатели. В соответствии с этим делением и построены следующие разделы ...

  • Электропривод с шаговым двигателем
  • ... такой же угол шага, как и первый способ, но положение точек равновесия ротора смещено на пол-шага. Рис. 8. Различные способы управления фазами шагового двигателя. Третий способ является комбинацией первых двух и называется полушаговым режимом, ”one and two-phase-on” half step или просто half ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info