Дипольный момент молекулы и связи

Заказать работу

Министерство общего и профессионального образования РФ

Московский Государственный Технический Университет

им. Н.Э.Баумана

Доклад

Дипольный момент молекулы и связи

 

Выполнен студенткой гр. МТ10-42  Галямовой Ириной

Проверил Волков А.А.

г.Москва, 2001г.

Представим себе, что можно найти “центры тяжести” отрицательных и положительных частей молекулы. Тогда условно все вещества можно разбить на две группы. Одну группу составляют те, в молекулах которых оба “центра тяжести” совпадают. Такие молекулы называются неполярными. К ним относятся все ковалентные двухатомные молекулы вида А2, а также молекулы, состоящие из трех и более атомов, имеющие высокосимметричное строение, например СО2, СS2 , СCl4 , С6 H6. Во вторую группу входят все вещества, у которых “центры тяжести” зарядов в молекуле не совпадают, молекулы которых характеризуются электрической асимметрией. Эти молекулы называют полярными. К ним относятся молекулы вида АВ, в которых элементы А и В имеют различную электроотрицательность, и многие более сложные молекулы. Систему из двух разноименных электрических зарядов, равных по абсолютной величине, называют диполем.

Полярность молекулы (и полярность связи) характеризуется дипольным моментом молекулы (или связи).

Величина дипольного момента сильно влияет на свойства полярных молекул и веществ, построенных из таких молекул. Полярные молекулы поляризуются в электрическом поле, устанавливаясь по силовым линиям поля, ориентируются в электических полях, создаваемых ионами в растворах, взаимодействуют между собой, замыкая свои электрические поля. Дипольный момент образуется за счет смещения центров положительного и отрицательного зарядов на некоторую величину l, называемую длиной диполя.

Чем более полярны молекулы, чем значительнее смещены валентные электронные пары к одному из атомов, тем больше m. И наоборот, если электрическая ассиметрия молекул незначительна, то величина m невлика .

Для системы из двух частиц дипольный момент m равен: m = el.

Где e- величина заряда;l- расстояние между центрами. Однако, определяя сразу величину дипольного момента, мы не знаем ни величины заряда e, локализованного в полярной молекуле, ни расстояния между центрами l.


Принимаем e равным заряду электрона(1,6021*10-19Кл) и тогда получаем приведенную длину диполя l, которая  является условной величиной. В качестве единицы измерения дипольных моментов принят дебай(названный в честь голландского физика П.Дебая, разработавшего теорию полярных молекул).в системе СИ 1D=0,33*10-29Кл*м.

Дипольные моменты обычно определяют экспериментально, измеряя относительную диэлектрическую проницаемость e веществ при различных температурах. Если вещество поместить в электрическое поле, создаваемое конденсатором, то емкость последнего возрастет в e раз, т.е. e=c/c0 (где c0 и с- емкость конденсатора в вакууме и в среде вещества).

Энергия электрического поля в конденсаторе U выражается соотношением:

U=1/2cV2,

где V- напряжение на обкладках конденсатора.

Из приведенного уравнения видно, что конденсатор в среде вещества имеет больший запас энергии, чем в вакууме (с>1). Это обусловлено тем, что под действием электрического поля происходит поляризация среды - ориентация диполей и деформация молекул. Первый эффект зависит от температуры, второй - не зависит.

Температурную зависимость относительно диэлектической проницаемости вещества e выражает уравнение Ланжевена-Дебая:

где М- относительная молекулярная масса вещества; r- плотность вещества, NA- постоянная Авогадро; k- постоянная Больцмана, равная R/ NA (R- универсальная газовая постоянная); a- деформационная поляризуемость молекул.

Измерив e при двух температурах, с помощью уравнения Ланжевена-Дебая можно определить a и m. Есть и другие методы экспериментального определения m.

Значения дипольных моментов для некоторых связей между разнородными атомами приведены в таблице:

Не следует путать дипольный момент связи и дипольный момент молекулы, так как в молекуле могут существовать несколько связей, дипольные моменты которых суммируются как векторы. Кроме того, на величину дипольного момента молекулы могут влиять магнитные поля орбиталей, содержащих электронную пару,- "неподеленные" электроны. Большое влияние на полярность молекулы оказывает ее симметрия.

Например, молекула метана CH4  обладает высокой степенью симметрии (центрированный тетраэдр), и поэтому векторная сумма дипольных моментов связей (m=0,4D) равна нулю:

Smсв=0

Если заменить водородные атомы на атомы хлора и получить молекулу CCl4, у которой дипольный момент связи m=2,05D, те в пять раз больший, чем для C-H, то результат останется прежним, так как молекула CCl4 обладает таким же строением.

рис.2. схема строения молекулы СО2

Связь С=О обладает дипольным моментом 2,7D, однако линейная молекула СО2

Является неполярной до тех пор, пока ее структура не исказится под действием других молекул(напр, Н2О).Структура линейной молекулы СО2, в которой атом углерода гибридизирован частично: 2s22p2 2s12p3  2q22p2 ,представлена на рис.2. Дипольные моменты связей, обладая различными знаками, дают общий депольный момент, равный нулю:

Smсв=0.

Таким образом, полярность молекул определяется довольно сложно, так как она учитывает все взаимодействия, которые могут возникнуть в такой сложной структуре, как молекула. Кроме того, ”полярность” молекулы не определяется лишь величиной дипольного момента, а зависит также от размеров и конфигурации молекул. Например, молекула воды более резко проявляет свои полярные свойства (образование гидратов, растворимость и т.д.), чем молекула этилового спирта, хотя дипольные моменты у них почти одинаковые (mн2о=1,84D; mс2н5он=1,70D).

Значения дипольных моментов для некоторых полярных молекул:

молекула

m молекула m молекула m молекула m молекула m

Н2

0 HF 1,82

Н2О

1,84

CO2

0

CH4;CCl4

0

О2

0 HCl 1,07

Н2S

0,93

SO2

1,61

CH3Cl

1,86

N2

0 HBr 0,79

3

1,46

SO3

0

CH2Cl2

1,57

Cl2

0 HI 0,38

3

0,55

SF6

0

CHCl3

1,15

Дипольный момент полярной молекулы может изменять свою величину под действием внешних электрических полей, а также под действием электрических полей других полярных молекул, однако при удалении внешних воздействий дипольный момент принимает прежнюю величину. Некоторые молекулы, неполярные в обычных условиях, могут получать так называемый индуцированный или “наведенный” дипольный момент, тоже исчезающий при снятии поля. Величина индуцированного момента в первом приближении пропорциональна напряженности электрического поля E: mинд=ae0E, гдеa- коэффициент поляризуемости, [a]=м3, e0-электрическая постоянная.

Физико-химические особенности полярных молекул определяются их способностью реагировать на внешние электрические поля (электрическая поляризация) и на поля, созданные другими полярными молекулами. В частности, за счет взаимодействия с полярными молекулами воды такие полярные молекулы, как HF, HCl и др.,могут подвергаться электролитической диссоциации.

Дополнительно используемая литература:

1.Общая и неорганическая химия. Карапетьян, Дракин

2. Теоретические основы общей химии. Горбунов, Гуров, Филиппов

Другие материалы

  • Физическая связь
  • ... энергии возмущения, называемую тепловым эффектом реакции, при образовании химической (ковалентная или донорно-акцепторная) связи. Именно на разрыв физических связей тратится теплота парообразования или сублимации, совершение работы расширения системы занимает в теплоте парообразования ничтожно ...

  • Строение и энергетические уровни двухатомных молекул
  • ... меняет знак при отражении в центре симметрии. В первом случае состояния снабжаются индексом g, во втором случае—индексом u. Любой энергетический уровень двухатомной молекулы является симметричным (s) или антисимметричным (а) в зависимости от того, остается неизменной или меняет знак полная волновая ...

  • Химическая связь. Типы взаимодействия молекул
  • ... возрастает с увеличением размеров атомов, составляющих молекулы этих веществ. Например, в HCl на долю дисперсионных сил приходится 81% всего межмолекулярного взаимодействия, для НВr эта величина составляет 95%, а для HI – 99,5%. Описание химической связи в методе молекулярных орбиталей (МО) Метод ...

  • Аэрозольные магнито-дипольные структуры в атмосфере
  • ... энергию извне в результате захвата активных аэрозольных частиц собственным электрическим и магнитным полем, в то время, как наблюдаемые структуры (макроструктуры) получают энергию в результате частичного распада ассоциатов внутри магнито-дипольного образования. В практическом применении в целях ...

  • Водородная связь
  • ... размером атома водорода, благодаря чему он может ближе подойти к другому диполю. Дипольная модель объясняет также линейную геометрию водородной связи, так как при линейном расположении атомов силы притяжения максимальны, а силы отталкивания минимальны. Однако не все экспериментальные факты, ...

  • Типы химических связей
  • ... 103 ккал/моль (431,24•103Дж/моль) Н2О Энергия связи 103 ккал/моль (431,24•103 Дж/моль) Наличие свободных электронов у аммиака и воды придает им основные свойства, более сильные у аммиака. 8. Строение и физико-химические свойства Т пл., Т кип., растворимость. Физические свойства дают ...

  • Молекулы-русалки
  • ... приготовить их водный раствор). Найденное решение оказывается поистине соломоновым: конечно же, они будут в воде, но только наполовину. Молекулы-русалки располагаются на поверхности воды так, что их гидрофильная головка (обладающая, как правило, разделенными зарядами – электрическим дипольным ...

  • Влияние обменных взаимодействий на вероятность дезактивации триплетных молекул акцепторов
  • ... влияния взаимодействия между триплетными молекулами акцептора и молекулами донора в основном состоянии на вероятность излучательной дезактивации энергии триплетного возбуждения в акцепторе показали следующее. Такое взаимодействие увеличивает вероятность дезактивации триплетных молекул акцептора в ...

  • Применение метода множественной регрессии для оценки значений энергии водородных связей
  • ... момент молекулы растворителя и вязкость, выражается следующим уравнением (2) Коэффициент множественной регрессии составляет КММР = 0,999. В табл. 2 представлены значения энергии водородных связей в различных растворителях, полученные по ур. (1) и (2), в сравнении с литературными данными. Таблица ...

  • Метод моментов в определении ширины линии магнитного резонанса
  • ... Основной недостаток метода моментов состоит в том, что важный вклад в значение момента (вклад тем существеннее, чем выше момент) дают крылья кривой, которые на практике не наблюдаются. Необходимо из вычисленных моментов линии магнитного резонанса с центром на ларморовской частоте w =w0 исключить ...

  • Химическая связь
  • ... Точные расчеты зависимостей полной энергии и ее компонент от межъядер­ного расстояния для простейшей структуры с X. с.— моле­кулярного иона Н с одноэлектронной связью — показы­вают, что минимум полной энергии, который достигается при равновесном межъядерном расстоянии, равном 1,06 А, связан с резким ...

  • ИК-спектральное проявление водородных связей
  • ... , а признаков ассоциации нет, это верное указание на внутримолекулярный характер водородной связи. Кроме того, межмолекулярная Н-связь (и ее спектральное проявление) исчезает при низкой концентрации вещества в нейтральном растворителе, тогда как внутримолекулярная Н-связь в этих условиях сохраняется ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info