Поиск по сайту


Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:


Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info

Диаграмма направленности антенны

Узнать стоимость написания работы

СВЕДЕНИЯ ИЗ ТЕОРИИ

Распределение электромагнитного поля в дальней зоне, создаваемое любой антенной, полностью определяется векторной функцией , зависящей только от сферических угловых координат (,) точки наблюдения

, (1)

где  и  - орты сферической системы координат.

Дальняя зона определяется обычно условиями:

для остронаправленных антенн ; (2)

для слабонаправленных антенн

при  , (3)

при  , (4)

где L - наибольший размер антенны.

Под пространственной диаграммой направленности (ДН) антенны по полю понимают графическое изображение изменения модуля функции  и  в зависимости от угловых координат и (рис.1).

На практике обычно итерессуются не пространственной ДН, а ее сечениями в плоскостях и  (рис.2)

, (5)

. (6)

Чаще всего ДН изображается в полярной и прямоугольной системе координат (рис.2, а и б соответственно).

Диаграмма направленности, у которой максимальное значение равняется единице, называется нормированной ДН (рис.3) и обозначается как F(,):

. (7)

Направленное действие антенны часто оценивается шириной ДН или углом раскрыва главного лепестка диаграммы направленности. Под шириной ДН по половинной мощности подразумевают угол между направлениями, вдоль которых напряженность поля уменьшается в  раз, по сравнению с напряженностью поля в направлении максимума излучения (см. рис.3), а поток мощности уменьшается вдвое. Под шириной ДН по нулям  подразумевается угол между направлениями, вдоль которых напряженность поля равна 0.

Направленные свойства различных антенн удобно оценивать коэффициентом направленного действия (КНД)

 при (8)

в точке приема. Наиболее распространены три метода измерения КНД антенны: графоаналитический, метод зеркального изображения и метод сравнения. В данной работе используется графоаналитический метод.

Для антенн, имеющих остронаправленные характеристики, мало отличающиеся друг от друга в двух взаимно перпендикулярных плоскостях, выражение для расчета КНД можно приближенно записать следующим образом:

 , (9)

где F(,) - нормированная ДН антенны.

По значению F(,) одним из графических методов находят интеграл, стоящий в знаменателе. Затем определяют КНД антенны.

В случае, если характеристика направленности имеет узкий главный (< 25) и малые боковые лепестки, такая характеристика с достаточной точностью может быть аппроксимирована эллипсом. В этом случае КНД антенны может быть выражен удобной для расчета формулой:

 , (10)

где  и  - ширина главного лепестка ДН по половинной мощности в плоскостях Е и Н соответственно.

В работе исследуются директорная и рупорная антенна сантиметрового диапазона.

Директорная антенна

Директорная антенна (рис.4) представляет собой линейную систему одинаково ориентированных приблизительно полуволновых вибраторов, перпендикулярных линии их расположения, и относится к системам с осевым излучением. Директорная антенна состоит из рефлектора Р, активного электрического вибратора А и целого ряда директорных вибраторов Д. Питание от генератора получает лишь один вибратор, который называется поэтому активным. Возбуждение прочих, так называемых пассивных вибраторов, осуществляется бегущей вдоль системы волной, источником которой является активный вибратор.

sitednl.narod.ru/1.zip - база сотовых по Петербургу

Длина активного вибратора составляет около 0,450,47. Чтобы обеспечить отставание фазы тока в вибраторах (директорах), направляющих излучение в свою сторону, их укорачивают на 510 % по сравнению с резонансной длиной. Опережение фазы тока в рефлекторе, “отражающем” излучение в сторону активного вибратора, достигается удлинением рефлектора на 35 % относительно резонансной длины.

Расстояние между вибраторами обычно несколько меньше четверти длины волны и часто выбирается порядка 0,2.

Многовибраторная директорная антенна узкополосна (510 % от рабочей частоты). Для оценки направленности действия настроенной антенны пользуются формулами:

 (11)

и

град, (12)

где L - длина антенны, а коэффициенты А и В, как функции L / , представлены на рис.5.

Общий вид и основные размеры исследуемой антенны даны на рис.4 и в табл.1. Помимо активного петлевого вибратора в ее состав входит три элемента рефлектора и пять директоров. Один из элементов рефлектора прикреплен к несущей стреле непосредственно, а два крайних - посредством вспомогательных стоек. Элементы рефлектора находятся примерно на поверхности параболического цилиндра, вдоль фокальной линии которого расположен петлевой вибратор, имеющий сложную форму для того, чтобы обеспечить хорошее согласование во всей полосе пропускаемых частот.

Все вибраторы директорной антенны изготовлены из полосок металла. Симметрирующее согласующее устройство выполнено в виде U-колена длиной / 2. Антенна настроена на частоту 1165 МГц ( см).

Пирамидальная рупорная антенна

Рупорная антенна (рис.6) состоит из рупора - отрезка волновода плавно расширяющегося сечения с открытым излучающим концом - раскрывом и устройства для питания рупора - волновода с возбуждающим устройством.

Рупор является трансформатором волны, распространяющейся в волноводе, в волну другого типа. Чаще всего он преобразует участок “плоской” волны малых размеров в поперечном сечении волновода в участок приблизительно плоской волны значительных размеров в раскрыве рупора. Это приводит к сужению диаграммы направленности и увеличению КНД. Кроме того, благодаря плавному изменению волнового сопротивления вдоль рупора, обеспечивается согласование волновода со свободным пространством. Фронт волны в пирамидальном рупоре можно считать сферическим, а фазовую ошибку в раскрыве определить по следующей формуле:

. (13)

При этом

; (14)

. (15)

Весьма точно КНД пирамидального рупора в децибелах по отношению к КНД абсолютно ненаправленной антенны может быть определен с помощью выражения:

дБ, (16)

где величины  и  определяются из рис.6, а  и  - из рис.7. длина волны, на которой снимаются ДН рупора, =3,2 см.

Методика снятия характеристики направленности антенны

Исследуемая антенна работает на прием. Она имеет возможность вращаться вокруг оси, перпендикулярной к плоскости, в которой снимается характеристика направленности. К выходу антенны подключен кристаллический детектор с усилителем У3-29 и ВК7-27. Так как при слабых сигналах детектор имеет квадратичную вольтамперную характеристику, показания индикатора ВК7-27 соответствуют квадрату напряженности поля, наводимого в исследуемой антенне. В качестве источника электромагнитных волн используется антенна, работающая на передачу. Передающая антенна в данном случае неподвижна и удалена от исследуемой антенны на расстояние ( определяется по одной из формул: (2), (3) или (4) ).

Для снятия характеристики направленности исследуемую антенну поворачивают на некоторый угол и фиксируют показания связанного с ней прибора. Операцию повторяют до тех пор, пока исследуемая антенна не будет повернута на 360. По полученным данным строят ДН исследуемой антенны.

Экспериментальное снятие характеристики направленности директорной и рупорной антенн осуществляется с помощью установки, структурная схема которой приведена на рис.8. При исследовании директорной антенны в качестве генератора 1 применяется Г3-21, а рупорной - 51И. На вход измерительного усилителя 5 при этом подаются поочередно сигналы то с детектора директорной антенны, то с детектора рупорной антенны.

ПОРЯДОК ПРОВЕДЕНИЯ РАБОТЫ

Директорная антенна

Включение установки:

1) подключить детектор директорной антенны ко входу усилителя У3-29, при этом задать максимальную чувствительность усилителя;

2) включить усилитель У3-29 в сеть тумблером “Сеть”, включить цифровой вольтметр ВК7-27 в сеть и установить предел измерения 100 mВ;

3) направить исследуемую директорную антенну на передающую антенну;

4) включить генератор Г3-21 тумблером “Сеть”; спустя 1-2 минуты включить”Высокое”; переключатель рода работы поставить в положение “Манипул.”;

5) установить на шкале частот Г3-21 частоту 1165МГц и вращением ручек “Уст. уровня ВЧ” и “Подстройка” добиться максимальных показаний индикатора.

Выводить постепенно выходной аттенюатор Г3-21 до тех пор, пока стрелка индикатора ВК7-27 не отклониться на половину шкалы при его максимальной чувствительности.

Установка готова к снятию ДН.

Измерения и расчеты:

1) снять ДН директорной антенны в плоскости Е; измерения производить в пределах 0-360 через 5 (необходимо учесть, что показания индикатора ВК7-27 соответствуют квадрату напряженности поля, т.е. мощности, принимаемой антенной);

2) повернуть приемную и передающую антенны относительно оси на 90 и снять ДН исследуемой антенны в плоскости Н через 6;

3) пронормировать и вычертить ДН директорной антенны в полярной системе координат; определить ширину ДН (;) по половинной мощности в плоскостях Е и Н;

4) рассчитать значения D и  по формулам (11) и (12), подставив в них величины А, В и L (см. рис.4 и 5);

5) сравнить значения D и  полученные экспериментально и в результате расчетов по формулам (11) и (12).

Пирамидальная рупорная антенна

Включение установки:

1) подключить к усилителю У3-29 детектор рупорной антенны;

2) выключатель “Сеть” генератора Г4-32А поставить в положение ” “

3) после 15-минутного прогрева настроить СВЧ-генератор на излучение максимальной мощности на частоте 8830 МГц; с помощью выходного аттенюатора СВЧ-генератора установить ослабление 1-3 дБ.

 Установка готова к снятию ДН.

Измерения и расчеты:

Проделать пп.1-3, как для директорной антенны, но снимать показания через 3.

1) Подставить полученные значения углов () и () в формулу (10). Принять числитель равным 34000 и определить значения D.

2) Рассчитать значения D по формуле (16), подставив значения , , ,  (см. рис. 6 и 7).

3) Сравнить значения D, полученные экспериментально (п.1), и в результате расчетов по формуле (16).

Литература

1.   Казарин А.Н., Кравченко И.Т. “Руководство к лабораторным работам по курсу “Излучающие устройства” - Минск, изд. БГУ им. В.И. Ленина, 1968.

2. Фрадин А.В., Рыжков Е.В. “Измерение параметров антенно-фидерных устройств” - М., “Связь”, 1972.

 

Другие материалы

  • Антенна РЛС – параболоид вращения
  • ... состоит из металлического зеркала (рефлектора) параболической формы и облучателя, расположенного в ее фокусе. В работе исследуется антенна с зеркалом в виде параболоида вращения (рисунок 1) с раскрывом, имеющим форму круга диаметром 2R. Прямая, перпендикулярная плоскости раскрыва и проходящая через ...

  • Линзовая антенна РЛС и ППФ
  • ... ) волновой поверхности. Как известно, плоский фронт волны при его достаточной площади обеспечивает острую направленность излучения. С помощью линзовых антенн можно получить диаграмму направленности с углом раствора всего лишь в несколько угловых минут. Принцип действия линзы основан на том, что ...

  • Плоская антенна поверхностной волны с ребристой замедляющей структурой
  • ... , которые могут поддерживать либо волны Е, либо волны Н, либо те и другие, отличающихся конструктивным выполнением и формой поверхности. Антенны с плоскими и_цилиндрическими непрерывными замедляющими структурами называют антеннами поверхностных волн. Примерами антенн с замедленной фазовой скоростью ...

  • Рупорно-линзовая антенна
  • ... линзой определяется следующим выражением: А суммарное амплитудное распределение рупорно-линзового излучателя рассчитывается по следующей формуле и имеет вид, изображенный на рис. 10. Рис. 10. Поле излучения апертурных антенн с прямоугольным раскрывом определяется общей формулой ...

  • Линейная решетка вибраторных антенн
  • ... работа предполагает использование симметричных вибраторов в качестве элементов ФАР (см. рис.2). Рис.2 Плоская решетка вибраторных антенн Вибраторные излучатели широко применяются в фазированных антенных решетках в метровом, дециметровом и сантиметровом диапазонах волн. Широкое применение ...

  • Спиральные антенны
  • ... n—число длин волн тока, укладывающихся на окружности витка цилиндра, поверхность которого является образующей спирали. Характеристики направленности спиральной антенны существенным образом зависят от возбужденного в спирали типа волны. Это можно наглядно показать, рассмотрев работу спирали с малым ...

  • Двухзеркальная антенна по схеме Кассергена
  • ... Недостаток системы – затенение раскрыва малым её зеркалом, а также обратная реакция малого зеркала на облучатель. Принцип работы двухзеркальной антенны по схеме Кассегрена состоит в том, что электромагнитное поле от облучателя, отражаясь от второго зеркала (гиперболоида) попадает на поверхность ...

  • Разработка пакета программ для расчета фазированной антенной решетки
  • ... программа для расчета взаимных связей между излучателями, находящимися в составе плоской антенной решетки. Излучатели могут быть как резонаторными, так и полосковыми вибраторами. Диэлектрик, служащий в качестве подложки, является многослойным. Программа разработана в рамках математического пакета ...

  • Исследование влияния прямоугольного проводящего экрана на ТВ передающую антенну с режекторной ДН
  • ... k-гo этажа; Hk - высота k-гo этажа относительно условного центра антенны. радиовещание антенна прямоугольный экран   3. Анализ влияния прямоугольного проводящего экрана на ТВ передающую антенну 3.1 ТВ антенна 5 телевизионного канала без корректировки диаграммы направленности ...

  • Антенная решетка из рупорно-линзовых антенн с электрическим качанием луча
  • ... и числа. [3] Анализ поставленной задачи По техническому заданию на курсовую работу требуется спроектировать решётку из рупорно-линзовых антенн с электрическим качанием луча в Е-плоскости. В Н-плоскости требуется обеспечить синфазный режим. В качестве одиночного излучателя используется ...

  • Малошумящие однозеркальные параболические антенны
  • ... поля в основном определяется диаграммой направленности облучателя в соответствующей плоскости. Выражение для нормированной диаграммы направленности зеркальной параболической антенны при этом имеет вид: , где -цилиндрические функции Бесселя первого и второго порядка; - коэффициент, показывающий ...

  • Двухзеркальная параболическая антенна круговой поляризации по схеме Кассегрена
  • ... сдиаметром раскрыва 7-18 м. В области радиорелейной связи применяются антенны с диаметром раскрыва от 0,5 до 5 м. В данной работе необходимо рассчитать двухзеркальную параболическую антенну круговой поляризации по схеме Кассегрена. 2. Основная часть 2.1 Расчет диаметров зеркал, фокусных ...

  • Синфазная решетка из рупорных антенн
  • ... Е (Рис.8): Рисунок 8. Заключение В данной работе были рассчитаны требуемые параметры синфазной решетки из рупорных антенн: размеры волновода, размеры рупора, КНД излучателя, габариты решетки, количество излучателей, расстояние между излучателями; построены графики: ДН единичного ...

Rambler's Top100 Рейтинг@Mail.ru
Рефераты и материалы размещенные на сайте принадлежат их законным правообладателям. При использовании материалов сайта, ссылка на KazReferatInfo обязательна!
Казахстанские рефераты
Copyright © 2007-2016г. KazReferatInfo