Атомно-абсорбционный анализ

Узнать стоимость написания работы

Содержание:

 

Введение

1.      Атомно-абсорбционный анализ

2.      Достоинства атомно-абсорбционного анализа

Список литературы


Введение

 

Метод атомно-абсорбционного спектрального анализа отличается высокой абсолютной и относительной чувствительностью. Метод позволяет с большой точностью определять в растворах около восьмидесяти элементов в малых концентрациях, поэтому он широко применяется в биологии, медицине (для анализа органических жидкостей), в геологии, почвоведении (для определения микроэлементов в почвах) и других областях науки, а также в металлургии для исследований и контроля технологических процессов.

По точности и чувствительности этот метод превосходит многие другие; поэтому его применяют при аттестации эталонных сплавов и геологических пород (путем перевода в раствор).


Атомно-абсорбционный анализ

 

Атомно-абсорбционный анализ (атомно-абсорбц. спектрометрия), метод количественного элементного анализа по атомным спектрам поглощения (абсорбции). Через слой атомных паров пробы, получаемых с помощью атомизатора, пропускают излучение в диапазоне 190-850 нм. В результате поглощения квантов света атомы переходят в возбужденные энергетические состояния. Этим переходам в атомных спектрах соответствуют резонансные линии, характерные для данного элемента. Согласно закону Бугера-Ламберта-Бера, мерой концентрации элемента служит оптическая плотность A = lg(I0/I), где I0 и I-интенсивности излучения от источника соответственно до и после прохождения через поглощающий слой.

Принципиальная схема пламенного атомно-абсорбционного спектрометра: 1-источник излучения; 2-пламя; 3-монохрома гор; 4-фотоумножитель; 5-регистрирующий или показывающий прибор.

Приборы для атомно-абсорбционного анализа - атомно-абсорбционные спектрометры - прецизионные высокоавтоматизированные устройства, обеспечивающие воспроизводимость условий измерений, автоматическое введение проб и регистрацию результатов измерения. В некоторые модели встроены микроЭВМ. В качестве примера на рис. приведена схема одного из спектрометров. Источником линейчатого излучения в спектрометрах чаще всего служат одноэлементные лампы с полым катодом, заполняемые неоном. Для определения некоторых легколетучих элементов (Cd, Zn, Se, Те и др.) удобнее пользоваться высокочастотными безэлектродными лампами.

Перевод анализируемого объекта в атомизированное состояние и формирование поглощающего слоя пара определенной и воспроизводимой формы осуществляется в атомизаторе - обычно в пламени или трубчатой печи. Наиболее часто используют пламя смесей ацетилена с воздухом (макс. т-ра 2000°С) и ацетилена с N2O (2700°С). Горелку со щелевидным соплом длиной 50-100 мм и шириной 0,5-0,8 мм устанавливают вдоль оптич. оси прибора для увеличения длины поглощающего слоя.

Трубчатые печи сопротивления изготавливают чаще всего из плотных сортов графита. Для исключения диффузии паров через стенки и увеличения долговечности графитовые трубки покрывают слоем газонепроницаемого пироуглерода. Максимальная температура нагрева достигает 3000 °С. Менее распространены тонкостенные трубчатые печи из тугоплавких металлов (W, Та, Мо), кварца с нихромовым нагревателем. Для защиты графитовых и металлических печей от обгорания на воздухе их помещают в полугерметичные или герметичные камеры, через которые продувают инертный газ (Аr, N2).

Введение проб в поглощающую зону пламени или печи осуществляют разными приемами. Растворы распыляют (обычно в пламя) с помощью пневматических распылителей, реже - ультразвуковых. Первые проще и стабильнее в работе, хотя уступают последним в степени дисперсности образующегося аэрозоля. Лишь 5-15% наиболее мелких капель аэрозоля поступает в пламя, а остальная часть отсеивается в смесительной камере и выводится в сток. Максимальная концентрация твердого вещества в растворе обычно не превышает 1%. В противном случае происходит интенсивное отложение солей в сопле горелки.

Термическое испарение сухих остатков растворов - основной способ введения проб в трубчатые печи. При этом чаще всего пробы испаряют с внутренней поверхности печи; р-р пробы (объемом 5-50 мкл) вводят с помощью микропипетки через дозировочное отверстие в стенке трубки и высушивают при 100°С. Однако пробы испаряются со стенок при непрерывном возрастании температуры поглощающего слоя, что обусловливает нестабильность результатов. Чтобы обеспечить постоянство температуры печи в момент испарения, пробу вводят в предварительно нагретую печь, используя угольный электрод (графитовую кювету) графитовый тигель (печь Вудриффа), металлический или графитовый зонд. Пробу можно испарять с платформы (графитового корытца), которую устанавливают в центре печи под дозировочным отверстием. В результате значительного отставания температуры платформы от температуры печи, нагреваемой со скоростью ок. 2000 К/с, испарение происходит при достижении печью практически постоянной температуры.

Для введения в пламя твердых веществ или сухих остатков растворов используют стержни, нити, лодочки, тигли из графита или тугоплавких металлов, помещаемые ниже оптич. оси прибора, так что пары пробы поступают в поглощающую зону с потоком газов пламени. Графитовые испарители в ряде случаев дополнительно подогревают электрическим током. Для исключения мех. потерь порошкообразных проб в процессе нагрева применяются испарители типа цилиндрических капсул, изготовленные из пористых сортов графита.

Иногда растворы проб подвергают в реакционном сосуде обработке в присут. восстановителей, чаще всего NaBH4. При этом Hg, напр., отгоняется в элементном виде, As, Sb, Bi и др.-в виде гидридов, к-рые вносятся в атомизатор потоком инертного газа. Для монохроматизации излучения используют призмы или дифракционные решетки; при этом достигают разрешения от 0,04 до 0,4 нм.

При атомно-абсорбционном анализе необходимо исключить наложение излучения атомизатора на излучение источника света, учесть возможное изменение яркости последнего, спектральные помехи в атомизаторе, вызванные частичным рассеянием и поглощением света твердыми частицами и молекулами посторонних компонентов пробы. Для этого пользуются различными приемами, например модулируют излучение источника с частотой, на которую настраивают приемно - регистрирующее устройство, применяют двухлучевую схему или оптич. схему с двумя источниками света (с дискретным и непрерывным спектрами). наиб. эффективна схема, основанная на зеемановском расщеплении и поляризации спектральных линий в атомизаторе. В этом случае через поглощающий слой пропускают свет, поляризованный перпендикулярно магнитному полю, что позволяет учесть неселективные спектральные помехи, достигающие значений А = 2, при измерении сигналов, которые в сотни раз слабее.

1.         Достоинства атомно-абсорбционного анализа

Достоинства атомно-абсорбционного анализа - простота, высокая селективность и малое влияние состава пробы на результаты анализа. Ограничения метода - невозможность одновременного определения нескольких элементов при использовании линейчатых источников излучения и, как правило, необходимость переведения проб в р-р.

Атомно-абсорбционный анализ применяют для определения около 70 элементов (гл. обр. металлов). Не определяют газы и некоторые др. неметаллы, резонансные линии которых лежат в вакуумной области спектра (длина волны меньше 190 нм). С применением графитовой печи невозможно определять Hf, Nb, Та, W и Zr, образующие с углеродом труднолетучие карбиды. Пределы обнаружения большинства элементов в р-рах при атомизации в пламени 1-100мкг/л, в графитовой печи в 100-1000 раз ниже. Абсолютные пределы обнаружения в последнем случае составляют 0,1-100 пг. Относительно стандартное отклонение в оптимальных условиях измерений достигает 0,2-0,5% для пламени и 0,5-1,0% для печи. В автоматическом режиме работы пламенный спектрометр позволяет анализировать до 500 проб в час, а спектрометр с графитовой печью-до 30 проб. Оба варианта часто используют в сочетании с предварит. разделением и концентрированием экстракцией, дистилляцией, ионным обменом, хроматографией, что в ряде случаев позволяет косвенно определять некоторые неметаллы и орг. соединения.

Методы атомно-абсорбционного анализа применяют также для измерения некоторых физических и физ.-химических величин - коэффициент диффузии атомов в газах, температур газовой среды, теплот испарения элементов и др.; для изучения спектров молекул, исследования процессов, связанных с испарением и диссоциацией соединений.


Список литературы

 

1.         Львов Б. В., Атомно-абсорбционный спектральный анализ, М, 1966;

2.         Прайс В., Аналитическая атомно-абсорбционная спектроскопия, пер. с англ., М., 1976;

3.         Харламов И.П., Еремина Г. В., Атомно-абсорбционный анализ в черной металлургии, М., 1982;

4.         Николаев Г. И., Немец А. М., Атомно-абсорбционная спектроскопия в исследовании испарения металлов, М., 1982;

5.         Хавезов И., Цалев Д., Атомно-абсорбционный анализ, пер. с болг., Л., 1983. Б. В. Львов. Л. К. Ползик.

Другие материалы

  • Атомно-адсорбционный спектрохимический анализ тяжелых металлов в почве
  • ... спектральных наложений. Соответственно такие анализаторы отличаются высокой точностью и продуктивностью.[3-7] 2. ПРИМЕРЫ ИСПОЛЬЗОВАНИЯ МЕТОДА В АНАЛИЗЕ ПОЧВ   Определение тяжелых металлов атомно-абсорбционным методом Методика предназначена для выполнения измерений массовой концентрации ...

  • Методы анализа лекарственных препаратов
  • ... излучения. Ультрафиолетовая спектрофотометрия — наиболее простой и широко применяемый в фармации абсорбционный метод анализа. Его используют на всех этапах фармацевтического анализа лекарственных препаратов (испытания подлинности, чистоты, количественное определение). Разработано большое число ...

  • Абсорбционные оптические методы
  • ... раствора. Взятый с обратным знаком логарифм T называют светопоглощением, поглощением или абсорбционностью (А). Обозначение А соответствует первой букве в названии этой величины (ранее которую называли оптической плотностью и обозначали D). . Уменьшение интенсивности света при прохождении через ...

  • Методы химического анализа
  • ... параметры при этом служат аналитическими сигналами, при условии, что они измерены достаточно точно. Электрохимические методы анализа в практику химического анализа вошли сравнительно давно и занимают в ней важную роль. Впервые потенциометрическое титрование было проведено в 1893 г. в институте ...

  • Флуометрия в анализе объектов окружающей среды
  • ... , входящего в состав образца. ГЛАВА 2. ОБЛАСТИ ПРИМЕНЕНИЯ ФЛУОМЕТРИИ В АНАЛИЗЕ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ Сегодня люминесцентный метод анализа охватывает широкий круг методов определения разнообразных объектов от простых ионов и молекул до высокомолекулярных соединений и биологических ...

  • Электрохимические методы анализа и их современное аппаратурное оформление: обзор WEB–сайтов фирм–продавцов химико-аналитического оборудования
  • ... в электрохимическую ячейку. Он реагирует с иодом до образования сероводорода, который затем электороокисляется на измерительном электроде. Электрический ток является мерой концентрации определяемого компонента. ГЛАВА 4. ОБЗОР WEB–САЙТОВ ФИРМ–ПРОДАВЦОВ ХИМИКО – АНАЛИТИЧЕСКОГО ОБОРУДОВАНИЯ & ...

  • Абсорбционная спектроскопия
  • ... регистрируется в виде непрерывной кривой (спектра поглощения) или в виде таблиц, если спектрофотометр имеет встроенную ЭВМ. Применение абсорбционной спектроскопии основано на след. законах. 1. Закон Бугера-Ламберта: если среда однородна и слой в-ва перпендикулярен падающему параллельному световому ...

  • Оптические методы анализа и их современное аппаратурное оформление: обзор WEB–сайтов фирм – продавцов химико-аналитического оборудования
  • ... 12 900у.е. ФСМ-1201 инфракрасный фурье-спектрометр 14 500у.е. Spectroscan-LF портативный спектрометр кристаллдифракционный сканирующий орт Ca до U 25 000у.е. ГЛАВА 3. ОБЗОР WEB – САЙТОВ ФИРМ – ПРОДАВЦОВ ХИМИКО-АНАЛИТИЧЕСКОГО ОБОРУДОВАНИЯ "AGILENT.RU" Сов

  • Методы молекулярной спектрометрии в анализе объектов окружающей среды
  • ... Как часто мы промахиваемся еще при выборе цели (с) генерал-лейтенант В.ВласовСуть метода анализа Итак, в оной главе пойдет речь о сущности анализа методом молекулярной спектрометрии. Данный метод основан на поглощнии световых волн молекулами вещества. Свет - это электромагнитные волны ...

  • Физико-химические методы анализа веществ
  • ... + 3H2SO4 = 2MnSO4 + K2SO4 + 5KNO3 + 3H2O Итак, существует большое число разновидностей количественного химического анализа, позволяющих определять разнообразные вещества в широких пределах концентраций. Среди химических методов анализа наиболее распространены титрометрические и гравиметрические ...

  • Анализ почв и агрохимический анализ
  • ... . Каждый смешанный образец массой 500 г. упаковывают в матерчатый или полиэтиленовый мешок и маркируют.   5) Подготовка почвы к агрохимическому анализу Составление аналитической пробы - ответственная операция, которая обеспечивает надежность полученных результатов. Небрежность и ошибки при ...

  • Методы контроля и анализа веществ (химические методы)
  • ... характеристики, по которой проводится аттестация стандартного образца; • метод анализа (сличения) объектов контроля со стандартным образцом; • агрегатное состояние самого стандартного образца как материла (вещества); • метрологическое назначение. Согласно этой классификации стандартные образцы ...

  • Спектральный анализ
  • ... атомов. Наблюдая эти спектры, ученые получили возможность «заглянуть» внутрь атома. Здесь оптика вплотную соприкасается с атомной физикой. Виды спектральных анализов Главное свойство линейчатых спектров состоит в том, что длины волн (или частоты) линейчатого спектра какого-либо вещества зависят ...

Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:

Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info