Поиск по сайту


Каталог учебных материалов

Свежие работы в разделе

Наша кнопка

Разместить ссылку на наш сайт можно воспользовавшись следующим кодом:


Контакты

Если у вас возникли какие либо вопросы, обращайтесь на email администратора: admin@kazreferat.info

Анализ Фурье

Узнать стоимость написания работы

Любая волна сложной формы может быть представлена как сумма простых волн

Жозеф Фурье очень хотел описать в математических терминах, как тепло проходит сквозь твердые предметы. Возможно, его интерес к теплу вспыхнул, когда он находился в Северной Африке: Фурье сопровождал Наполеона во французской экспедиции в Египет и прожил там некоторое время. Чтобы достичь своей цели, Фурье должен был разработать новые математические методы. Результаты его исследований были опубликованы в 1822 году в работе «Аналитическая теория тепла» (Theorie analytique de la chaleur), где он рассказал, как анализировать сложные физические проблемы путем разложения их на ряд более простых.

Метод анализа был основан на так называемых рядах Фурье. В соответствии с принципом интерференции ряд начинается с разложения сложной формы на простые — например, изменение земной поверхности объясняется землетрясением, изменения орбиты кометы — влиянием притяжения нескольких планет, изменение потока тепла — его прохождением сквозь препятствие неправильной формы из теплоизолирующего материала. Фурье показал, что сложная форма волны может быть представлена как сумма простых волн. Как правило, уравнения, описывающие классические системы, легко решаются для каждой из этих простых волн. Далее Фурье показал, как эти простые решения можно суммировать, чтобы получить решение всей сложной задачи в целом. (Говоря языком математики, ряд Фурье — это метод представления функции суммой гармоник — синусоид и косинусоид, поэтому анализ Фурье был известен также под названием «гармонический анализ».)

До появления компьютеров в середине ХХ столетия методы Фурье и им подобные были лучшим оружием в научном арсенале при наступлениях на сложности природы. Со времени появления комплексных методов Фурье ученые смогли использовать их для решения уже не только простых задач, которые можно решить прямым применением законов движеия Ньютона и других фундаментальных уравнений. Многие великие достижения ньютоновской науки в XIX веке фактически были бы невозможны без использования методов, впервые предложенных Фурье. В дальнейшем эти методы применялись в решении задач в различных областях — от астрономии до машиностроения.

***

Жан-Батист Жозеф ФУРЬЕ

Jean-Baptiste Joseph Fourier, 1768–1830

Французский математик. Родился в Осере; в возрасте девяти лет остался сиротой. Уже в юном возрасте проявил способности к математике. Фурье получил образование в церковной школе и военном училище, затем работал преподавателем математики. На протяжении всей жизни активно занимался политикой; был арестован в 1794 году за защиту жертв террора. После смерти Робеспьера был выпущен из тюрьмы; принимал участие в создании знаменитой Политехнической школы (Ecole Polytechnique) в Париже; его положение послужило ему плацдармом для продвижения при режиме Наполеона. Сопровождал Наполеона в Египет, был назначен губернатором Нижнего Египта. По возвращении во Францию в 1801 году был назначен губернатором одной из провинций. В 1822 году стал постоянным секретарем Французской академии наук — влиятельная должность в научном мире Франции.

Список литературы

Для подготовки данной работы были использованы материалы с сайта http://elementy.ru/

Другие материалы

  • Ряды Фурье. Численные методы расчета коэффициентов
  • ... большой объем памяти для хранения промежуточных данных (u,v,p,…). Метод Рунге скорее удобен для вычисления вручную, но менее актуален в программировании. Если говорить о нахождении более оптимального метода расчета коэффициентов Фурье на ЭВМ, то таким является вышеописанное быстрое преобразование ...

  • Ряды Фурье и их приложения
  • ... нашли широкое применение в различных отделах математики. Особенно успешно ряды Фурье применяются в математической физике и её приложениях к конкретным задачам механики и физики. Этот вопрос можно решить с помощью теоремы Дирихле. («Краткий курс высшей математики», Шнейдер и др., стр. 181) При ...

  • Ряды Фурье. Интеграл Фурье. Операционное исчисление
  • ... широко используются для моделирования ударных сил, сосредоточенных нагрузок и тому подобных явлений. § 16. Основные теоремы операционного исчисления Свертка оригиналов. Сверткой оригиналов  и  называется функция . Функции f (t) и g(t) называются компонентами свертки. Найдем для ...

  • Перетворення Фур’є. Спектри неперіодичних функцій
  • ... Найбільш часто для спектральної обробки використовується спектр Фур'є, одержуваний на основі базису синуса (розкладання Фур'є, перетворення Фур'є) [7]. Основний зміст перетворення Фур'є в тім, що вихідна неперіодична функція довільної форми, яку неможливо описати аналітично й у загальному випадку ...

  • Представление функции рядом Фурье
  • ... ведут себя в точке  одинаково: либо оба сходятся, и притом к одной и той же сумме, либо оба расходятся. Представление функций рядом Фурье Наложим на функцию f(x) более тяжелое требование, а именно—предположим ее кусочно-дифференцируемой в промежутке . Тогда имеет место общая теорема: Теорема. ...

  • Некоторые главы мат. анализа
  • ... вероятность второго при наличии первого . Для независимых событий правило умножения принимает вид: , или Основываясь на теорию выведем некоторые формулы для решения поставленной задачи. Схема состоит из нескольких n блоков (рис. 2.1), каждый из которых (независимо от других) может выйти из ...

  • Спектральный анализ и его приложения к обработке сигналов в реальном времени
  • ... существующих алгоритмов проанализировать возможность их применения как к последовательной обработке сигналов в реальном времени, так и к блочной обработке и оценить качество получаемых результатов . Критериями «качества» оценки спектральной плотности мощности в общем случае являются смещение этой ...

  • Анализ и моделирование методов когерентной оптики в медицине и биологии
  • ... миллиметров. Голографическая интерферометрия и спекл-интерферометрия являются двумя широкими областями, используемыми для обнаружения перемещений методами когерентной оптики. Кратко рассмотрим каждую из них, чтобы иметь возможность сравнивать их между собой. Голографическая интерферометрия ...

  • Частотно-временной анализ сигналов
  • ... 2. Базисные функции частотно-временного анализа Итак, частотно-временной анализ предназначен для выявления локальных частотно-временных возмущений сигнала. Вследствие кратковременности таких возмущений, сам сигнал может рассматриваться как заданный в L2 т.е. для одномерных сигналов – на всей ...

  • Фурье (Fourier), Жан Батист Жозеф
  • ... административной деятельностью и одновременно – теорией распространения тепла в твердом теле. Трудолюбие и методичность воспевались не раз и не два. Вот и Жан Фурье – аккуратно выведя дифференциальное уравнение теплопроводности, он принялся искать его решение методом разделения переменных, задавая ...

  • Спектральный анализ колебаний
  • ... числом спектральных составляющих, тем самым уменьшая частотный диапазон передаваемых сигналов. Обычно спектр ограничивают частотой, на которой сумма мощностей постоянной составляющей и вошедших в этот диапазон гармоник составляет не менее 90 % полной средней мощности колебания.   Анализ ...

  • Жан Батист Жозеф Фурье
  • ... твердом теле, а в 1822 опубликовал известную работу «Аналитическая теория тепла», сыгравшую большую роль в последующей истории математики. В ней Фурье вывел дифференциальное уравнение теплопроводности и развил идеи, в самых общих чертах намеченные ранее Д. Бернулли, разработал для решения уравнения ...

  • Билеты по математическому анализу
  • ... Приведите пример. Найти область сходимости степенного ряда. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету МАТЕМАТИЧЕСКИЙ АНАЛИЗ Билет № 14 В чем состоит связь между понятиями предела и бесконечно малой? Найдите. Напишите ...

Rambler's Top100 Рейтинг@Mail.ru
Рефераты и материалы размещенные на сайте принадлежат их законным правообладателям. При использовании материалов сайта, ссылка на KazReferatInfo обязательна!
Казахстанские рефераты
Copyright © 2007-2016г. KazReferatInfo